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BASIS SETS : RECAPITULATION
HK1

DFT formal e 2 p(7)
Kohn-Sham equations practical Hicsti = eupi
XC-functional
o= 3
basis set transformation to s=1
algebra (convenient) HC=SCE

matrix diagonalization

BASIS SETS : RECAPITULATION

HK1
DFT formal HK2 > p(7)
Kohn-Sham equations practical Hyson = e
XC-functional
&= P
transformation to J=t

basis set algebra (convenient) HC=SCE

matrix diagonalization

plane waves + augmented methods

local basis set pseudopotentials

© small basis set ® not so small ® not so small

© physical insight ® less intuitive © more intuitive

® not orthogonal © orthogonal ® not orthogonal

® depends on atomic position © position-independent © position independent

® BSSE? completeness? ® effect of PP? © very accurate (some)
© periodic = crystals © periodic =¥ crystals

© core information (some)




VOLUME PARTITIONING

The reason for the large size of the plane wave basis sets was the steep features in the wave functions :

* a square wave can be made by adding..
/W\ « the fundarm ental... /\/\/\ The steeper the feature you want to
describe, the more basis functions
ANANANS @ minus 1/3 of the third harm onic ﬁ/\/\/v\/\/v\ (plane waves) are needed.
Back-of-the-envelop estimate for

Diagonalize 108108 matrices...?
VANV @ minus 1/7th of the 7th harmenic...

The steepest features appear near
to the nuclei:
a) b) > get rid of them by PP (sce before)
=> use basis functions that have such
steep features built-in (today)
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VOLUME PARTITIONING

™ ‘near’ to a nucleus:
+ electrons behave almost
as in a free atom (steep changes,
many plane waves would be
needed)
« most efficient to use
atom-like basis functions

here
Identifies which
| sphere/atom
g far away from the nucleus:
+ electron density is much smoother
(‘almost constant' = free electron) > Partition space into a region of atom-like
* much less plane waves needed behaviour and a region of free-electron-like

behaviour.




VOLUME PARTITIONING
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VOLUME PARTITIONING

We will look at a few methods that realize

augmented plane wave methods
+ APW

« LAPW

+ APW+lo

«LMTO

projector augmented plane wave method
« PAW

in various ways this concept of volume partitioning:
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THE APW METHOD

This was the final expression for a plane wave basis set:
n/=\ _ n,E i(E+R)-7
Ve (r) = E g e (F+K)
R

= >k (7)
R

plane wave basis function

THE APW METHOD

Definition of an Augmented Plane Wave basis function:

V1

/ SemdAfn T u(r EYYE(P) Fe B,
N—

This was the final expression for a plane wave basis set:

(rlf..!\'ir‘ Fel

n= nk i(F+K)-7
v (r) = cie
K
_ Cn,E
R
i plane wave basis function

THE APW METHOD

Definition of an Augmented Plane Wave basis function:

_— plane wave
1 : i(k+K)-7
v

depends on which sphere rel
- a,k+K . "y . v
5 45 ‘ud(r, EYYL() Te S,

el ,m < Lfm ’ m

spherical harmonic

linear combination of numerical solution of free-atom
several atom-like Schrodinger equation (no boundary
functions conditions)

not yet determined set
of coefficients




THE APW METHOD

Definition of an Augmented Plane Wave basis function:

Cartoon : APW function

THE APW METHOD

Definition of an Augmented Plane Wave basis function:

|‘(rl.f\-f\br Fel
Vi

n";.\-,(:". %) = ?
s ,“1}'{:". EY!(#) Te S,

THE APW METHOD

Definition of an Augmented Plane Wave basis function:

1 (u}."-h"u' Frel

vV
2?
SR, B Fe S,

Expand the plane waves in Bessel functions around the center of the muffin tin sphere:

U";\(.r L) =

1 LR AT i RF . s vt 5 ™ G
L iR el Ror 57 it ([F+ R 171) Vi (F+ R) i )
V1 Vi tm
Choose the A-coefficients such that term by term matches at the sphere boundary:
' rife! (F+R) 7o i . - .
Azl ull e ([F+ K| R) Yo (F + K)
)

v Trr‘,'( h;,,.

...and truncate the expansion at some £,,, . (criterium: numerical stabiliy).




THE APW METHOD

Definition of an Augmented Plane Wave basis function:

1""'."‘.1'!',‘(:". )Y,.(7") 7€ S,

“m

What does this mean?

THE APW METHOD

Definition of an Augmented Plane Wave basis function:

|.(rlf\¢f\'ir' Fel
Vi

b3 .'l"'L."".u','(.r". )Y (7)) 7Fe S,

fm

Ll m

What does this mean?

APW's will be an efficient basis set to describe the eigenstate z‘,r;«v‘ onlyif £ — c;
(Ficsvp = e (,-;)

But € is a result of our solution, hence we cannot even write down the basis set before
the problem is solved...!?

=) time-consuming iterative procedure needed.

THE APW METHOD
T Determine accuracy by
\ \ choosing Ko and
(a third loop for the
| selfconsistent procedure
T \ is not shown )

Choose a trial E

vK:K/<K_| : determine

& LI 3 B /\

This inner loop numerically searches one by one

the roots of the secular equation, the latter being

possibly a nasty function with asymptotes etc.
=> time-consuming

the corresponding APW

Calculate the matrix elements
of Hand S

Determine the secular equation

Every time you go through the outer loop, you
obtain one eigenstate. The price: as many matrix
diagonalizations as the number of times you had
to go through the inner loop.

E is not a root

Determine the coe




THE APW METHOD

Determine accuracy by
choosing K and (i

(athird loop for the
self-consistent procedure
is not shown 1)

Choose a trial E

\

7 & LR 3 P / N

This inner loop numerically searches one by one

the roots of the secular equation, the latter being

possibly a nasty function with asymptotes etc.
=> time-consuming

VK:K<K_ | : determine

the corresponding APW

Calculate the matrix elements
of Hand S

Determine the secular equation

Every time you go through the outer loop, you
obtain one eigenstate at this i he price: as
many matrix diagonalizations as the number of
times you had to go through the inner loop.

=) Although APW is very accurate...

=) ...itis extremely slow.

=) Can we speed it up, without loosing

too much accuracy?

E is not a root
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THE LAPW METHOD

PHYSICAL REVIEW B 16 OCTOBER 1975

Linear methods in band theory®

O. Krogh Andersen
Deparment of Electrophysics. Technical University, Lywghy, Denmark
(Received 14 Apeil 1975)

Two approtimate methods for solving the band-structure problem in an efficient and physically transparcnt
way are presented and discused in detail The variational principle for the one-electron Hamiltonian is used
in both schemes, and the trial functions are linear combinations of energy-independent augmented plane waves
(APW) and muffin-tin orbitals (MTO), respectively. The sceular equations are therefore cigenvalue equations,
lincar in energy. The trial functions are defined with respect 1o & maflin-tin (MT) potential and the energy
bands depend on the potential in the spheres through potential parameters which describe the encrgy
dependence of the logarithmic derivatives. Inside the spheres, the encrgy-independent APW i that linear
combination of an exact solution, sl the arbitrary but fised energy £ and its cnergy derivative which matches
continuously and differentiably onto the plane-wave part in the interstitial region. The energies obtained with
the linear- AW method for the MT potential have crrors of ander (F—£, )%, Similarly, the encrgy-independent
MTO is that linesr combination which msiches onto that solution of the Laplace equation in the interstitial
region which is regular at infinity. The energies obtained with the linear-MTO method have sdditionsl errors
of order (E =V _, 1, ariing (rom the intenstitial region where the potentisl is ¥, . The linear-APW (LAPW)
method combines, desirable features of the APW and OPW methods: it can treat d bunds, the encrgy
dependence of its pscudopotential s linear and, owing 10 the smoothaess of the encrgy-independent APW at
the spheres. non-MT costributions 10 the potential are included principally through their Fourier components.
The linearMTO (LMTO) method is particularly suites for chosely packed structures and it combines desirable
features of Kornnga: Kohn-Rostoker, lincar combenation-of atomic-orbetals, and cellular methods. the secular
matrix s lincar in encriy, the overlap integrals factorize as potential parametcrs and strusture comstants, the
latter are canonical in the sensc that they nesther depend on the encrgy Bor the eell volume and they specify
the boundary conditions on & single MT of atomic sphere in the most convenicnt way. This method is very
well suited for The lattice test is applicd 10 the linear-MTO method and the
free-clectron energy bands ase accurately reproduced. Finally, it is shown how relativistic effects may be
imchuded in both the LAPW and LMTO methods.




THE LAPW METHOD

Taylor-expand the u-function around a guessed energy Ey:

ou(r', E)

ug (r', ) = ug(r', Eo) + (Eo — €}) . + O(Ey — ¢)?
¢ By
ad(r', o)
THE LAPW METHOD
Taylor-expand the u-function around a guessed energy E:
—
( du(r', E .
ug (r', @\ = |ug{r’, Eu)} y + O(Eo — €f)?
L oF E=to
O
i (4§ (.Eo) )
unknown !
known 1
\
\
\
Put this into the definition of an APW: AN
" \\\
1 i(R+R)-7 =
W(,L( )T S rel

.
P EY =
e (AGFF s, B + BEF R, B)) Vi) 7€ S,

m

Linearized Augmented Plane Wave basis function (LAPW).

THE LAPW METHOD

n

)
»
%
k3

Two sets of coefficients:
fixed by requiring that at the sphere boundary

value and slope should match to the spherical . P " \
expansion of plane waves. h 2

radial part ot

5

energy-independent

1 iR i)

— Ao, K+ N N A =
Stm (f‘}‘m “ug (r' o) + By, u?’(f’-f‘?n)> Yo (i) 7€ S,

Linearized Augmented Plane Wave basis function (LAPW).




THE LAPW METHOD

Further details:
 E, should be close to the eigenvalues. Therefore, use different E-values for different
atoms (o), and make ther 7 -dependent:

\IT' i+ K)-F rel
q ﬁJ,‘ (r) - 3

Zem { 45 *+Rye(r, B2,) + B R ag Y FES,

THE LAPW METHOD
Further details:
 E; should be close to the eigenvalues. Therefore, use different E-values for different
atoms (o), and make the £ -dependent:
IT, i(k+K)F Fel

() o 7

Tom (A8 Rug(r, By + B Fag(r '} FESa

o Foragiven / , several eigenvalues can appear. Example for £ =1in Ga:
4p: avalence orbital, allow full freedom and describe by LAPW <> take £, near o this (guessed) eigenvalue
3p : @ 'semi-core orbital: almost as in a free atom, but not completely. Destribe by Local Orbital basis functions:
2p - a core orbital: as in a free atom, at most with shifted eigenvalues. Free atom calculation

» depends on the atom (or sphere)
> no f or f dependence because not connected to plane waves
% A-B-C determined by normalization, zero value and zero slope at sphere boundary (=confined within sphere)

THE LAPW METHOD

Having now a basis set of LAPW's and LO’s, we proceed with the same scheme
as for PW+PP :

(the outer loop for the
self.consistent procedure
is not shown )

R R 5 Rovse| detormine

the corresponding LAPW

Calculate the matrix elements
of Hand S




THE LAPW METHOD

Having now a basis set of LAPW's and LO’s, we proceed with the same scheme
as for PW+PP :

Determine accuracy by
choosing Jkind i
(the outer loop for the
self.consistent procedure
is not shown )

R+ f| 5 Rovs| determine
the corresponding LAPW

Calculate the matrix elements

of Hand S

Instead of 1 solution per many diagonalizations
(as for APW), you get many solutions for each
diagonalization.

.

=) enormous gain in speed

=y almost no loss in accuracy (linearization
Find coeflicients ;" foras error is small)

many cigenfunctions (same 1
various n) as the matrix dimension

THE APW+lo METHOD ~ (just briefly)

The present state-of-the-art in this family of methods preserves the accuracy of LAPW, but
needs a smaller basis set size (10-fold speed-up).

3 types of basis functions are used (not much details here):

1 i(k+K)7 -
- 77 ¢ . rel
uhu“p o
W | Sem AR e (' B ) FES,
0 g
& ()
) (Afeup (', Ee) + Blug (', ER)) YA(P) FE S,
local orbital !
(lo)
0 P
"l’l‘”l v“jl"
Local Ottital | (ABEug(r', EY ) + Colup (. B3 ) YE(G) 7
(LO)

PP+PW vs. LAPW
« On average, the speed of both methods is comparable
« There are good general-purpose implementations for both of them

« Why would you use PW+PP?
« “everyone does” =» many benchmark cases
« its mathematics are simple =» new theory developments are usually
implemented first in PP codes (e.g. still no stress tensor formalism within LAPW)

« Why would you use LAPW?
* You want to start calculating right away, without having to test PP’s first
«‘the for accuracy” =» whenever there is any doubt about a subtle effect,
LAPW will give the ultimate DFT answer (for that XC-functional)
« straightforward access to effects near the nucleus
(core level shifts, hyperfine interactions,...)

o Often this is the best advice:
“Use the method that you know best.”

10



THE LMTO METHOD  (just briefly)

Amethod that has philosophy similar to LAPW is the Linearized Muffin Tin Orbital
method (LMTO). Rather than connecting the atomic solutions inside the spheres
to plane waves, it connects them to Hankel functions.

In particular for close-packed solids, LMTO can be very fast.

CONTENT OVERVIEW

o Basis sets: recapitulation
o Volume partitioning
o augmented plane wave methods
0 The APW method
0 The LAPW method
o The APW+lo method (briefly)
o The LMTO method (briefly)
o The projector augmented wave method (PAW)

o Comparisons, codes, literature
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THE PAW METHOD

What does it want to achieve ?

=> re-write a single-particle Kohn-Sham orbital as a sum of three contributions,
each of which can conveniently be expressed in a basis.

Un(F) = GalP) + D2 UL(R -

> U

THE PAW METHOD

What does it want to achieve ?

=> re-write a single-particle Kohn-Sham orbital as a sum of three contributions,
each of which can conveniently be expressed in a basis.

V() + DD UN) — 32 0n()

Un(1) =

all-electron (Kohn-Sham)
wave function

pseudo
wave function

all-electron 1-center
wave function

pseudo 1-center
wave function

defined everywhere

steep inside spheres
smooth outside spheres

(no suitable basis,
that's the problem...)

defined everywhere

smooth everwhere

expressed in plane
wave basis

defined inside spheres

steep inside spheres

expressed in partial
wave basis

defined inside spheres

smooth inside spheres

expressed in pseudo
partial wave basis

(slide by P. Blochl)

PAW augmentation

1)

all-electron

12



THE PAW METHOD

[W) = |W) + E (|“, — | ),}‘, ) = W) + E (\]n;., — ‘I'J.-)

— )

o o
— i)

— 133

p-o orbital of a Cl, molecule

THE PAW METHOD
How does it achieve this ?

= PAWAnsatz :

i = )+ 3 o - dw) (o))

3

By making a choice for each of the three numbered objects,
the re-writing we are aiming for can be unambiguously defined.

a = sum over atoms in the unit cell (or ‘augmentation spheres’)
i = sum over basis functions

THE PAW METHOD

How does it achieve this ?

= PAWAnsatz :

bal?) = + 2% (o0 - a0 (26
1 2 3
pseudo wave function

« outside the spheres:
« identical to the all-electron wave function (which we don't know yet)
« surely smooth, as the all-electron wave function is smooth there

« inside the spheres:

« different from the all-electron wave function
« smooth

> How the pseudo wave function will look like,
will be fully determined by the three choices we'll make.

13



THE PAW METHOD

How does it achieve this ?

= PAWAnsatz :

N——

2

a i "1

< 7 w>
~

3

~

difference between all-electron and pseudo wave functions

THE PAW METHOD

How does it achieve this ?

= PAWAnsatz :

i = b+ 3 o - a0 (o
\ 1 2 3
e

~a 7
i | ¥n
~——

alternative way to express this difference:

~ How these transformation
Pu(r) = 1+ Z'Ta P (F)
a

operators look like, is not yet
defined here.

e

difference between all-electron and pseudo wave functions

THE PAW METHOD

How does it achieve this ?

= PAWAnsatz :

Po(F) = i’n(f‘) + Z Z - g@?(?) <£L 1Z’n>
a i -VZ-

3
make a choice for the all-electron partial waves
« outside the spheres:
« it will not matter how they look like,
continue the behaviour they had inside the spheres:
« inside the spheres:
« anything that can serve as efficient basis functions for
the steep part of the all-electron wave function
« often taken as solutions of the free atom Schrodinger equation

14



THE PAW METHOD

How does it achieve this ?

= PAWAnsatz :

3

You can use the (as yet unspecified) transformation operators to produce
smooth pseudo-versions of the all-electron partial waves:

G = (1 + T ()

Alternatively, by making a choice for these pseudo partial waves,
the transformation operators are defined:

TN = ¢ -

Therefore...

i = 0+ £ (o) o) (o))
a i S

THE PAW METHOD
How does it achieve this ?

= PAWAnsatz :

D (T N’)n )+ () — Dy 7)n
0 (7) V() %:Z sv,l(”) <i{/1’>

make a choice for the pseudo partial waves

« outside the spheres:
« choose them to be identical to the all-electron partial waves

« inside the spheres:
« choose them such that they can serve as a basis
for the pseudo wave function inside the sphere:

Da(7) = S @I(F) 7 e sphere ‘a’

THE PAW METHOD

How does it achieve this ?

= PAWAnsatz :

N ——"
1 2

(omitting the proof/derivation here) the expansion coefficients are determined

by applying appropriate projectors to the pseudo wave function. There is

quite some freedom to choose these element-specific projectors.

The choice made determines how smooth the pseudo wave function will be.

e

7 € sphere ‘a’

15



THE PAW METHOD
How does it achieve this ?

= PAWAnsatz :

N——
2 3

w = 00 = £X e - a0 (o))
a i Y Y

By defining

the all-electron 1-center functions
Z (pt ‘ z,,n> T = W) (steep, inside sphere, expressed
i in a partial wave basis)
and
—a the pseudo 1-center functions
Z <pL (smooth, inside sphere, expressed
i in a pseudo partial wave basis)

—

we find that the Ansatz leads to the desired expression:

THE PAW METHOD
How does it achieve this ?

= PAWAnsatz :

b (T D7) + () — 7)?’ 7 i D)
) = ) + 3|00 - 0 (2]9)

THE PAW METHOD
Practical procedure :

After having made the required choices :

wir = B+ T T ‘Q‘

you know the transformation operator and can replace %/, in the Kohn-Sham equations by TZZJn
This leads to a transformed KS-equation, with ¢/,,, as the unknown. Solve it for ¢/, , after
which you can finally fill out all items in the right-hand side of the above expression.

16



THE PAW METHOD

Important issue :

Po(F) = /&71(7:) + Z Z w - @i@ 1Z)n>
“or 1 2

The choice of the element-dependent projector functions (the “P” in PAW) determines how
smooth the pseudo wave function will be, and hence how small the plane wave basis (and the

speed of the calculation) will be.

Generating suitable projectors is partly a kind of art, comparable to the art of generating

good pseudopotentials.

Well-tested tabulations of projector functions are either a propietary part of code (e.g. for VASP),

or are freely available for use across codes (e.g. http://users.wfu.edt

An extensive discussion on PAW generation can be found at http:/arxiv.ora/pdf/1309.7274.pdf .

BASIS SETS : RECAPITULATION

DFT

Kohn-Sham equations

basis set

formal

practical

transformation to
algebra (convenient)

HK1
i 2 (7

Hiests = €165
XC-functional

=1
HC=SCE
matrix diagonalization

local basis set

© small basis set

© physical insight

® not orthogonal

® depends on atomic position
® BSSE? completeness?

plane waves +
pseudopotentials

@ not so small

® less intuitive

© orthogonal

© position-independent
® effect of PP?

© periodic = crystals

PAW

ﬁg mented methods

® not so small

© more intuitive

® not orthogonal

© position independent

© very accurate (some)
© periodic =¥ crystals

© core information (some)
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LAPW codes

WIEN2k
http://www.wien2k.at

review paper
K. Schwarz, Journal of Solid State Chemistry 176 (2003) 319
http://dx.doi.org/10.1016/S0022-4596(03)00213-5

www.flapw.de

FLEUR

EXCITING ; ]
http://exciting-code.org/ ex@lng

S Ed
http://elk.sourceforge.net/ AN

PAW codes
VASP
http://cms.mpi.univie.ac.at/vasp/

review paper

Computer Physics Communications 177 (2007) 6-13
ABINIT

http://www.abinit.org/

review paper

Computer Physics Communications 180 (2009) 2582-2615
CP-PAW

https://www2.pt.tu-clausthal.de/paw/

review paper

Physical Review B 50 (1994) 17953-17979

atompw / pwpaw
http://www.wfu.edu/~natalie/papers/pwpaw/man.html
review paper

Computer Physics Communications 135 (2001) 329-347
Computer Physics Communications 135 (2001) 348-376

Further reading

Density Functional Theory and the family of (L)APW-methods: a
step-by-step introduction

S. Cottenier

Instituut voor Kern- en Stralingsfysica, KU Leuven, Belgium (2002)

ISBN 90-807215-1-4

http://www.wien2k.at/req_user/textbooks (free download) Ch. 2: PW+PP

Ch. 3-5: (L)APW(+lo)

+ references therein. Ch. 6: PAW

Electronic structure methods: Augmented Waves,
Pseudopotentials and the Projector Augmented Wave Method
Peter E. Bloechl, Johannes Kaestner, Clemens J. Foerst

chapter in "Handbook of Materials Modeling", Sidney Yip (Ed.), Springer (2005),
ISBN 1-4020-3287-0

http://arxiv.org/abs/cond-mat/0407205  (free download)

+ references therein
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Further reading

First-principles simulation: ideas, illustrations and the
CASTEP code

M D Segall, Philip J D Lindan, M J Probert, C J Pickard,

P J Hasnip, S J Clark and M C Payne

J. Phys.: Condens. Matter 14 (2002) 2717-2744
http://stacks.iop.ora/cm/14/2717 (available on Minerva)

+ references therein
Excellently written, without much of the usual technical slang.

Recommended reading, as a kind of text book that summarizes much of
this course up to here.

Appendix: DFT-accuracy vs. experiment / accuracy of various basis sets

Source:  Error Estimates for Solid-State Density-Functional Theory Predictions:
An Overview by Means of the Ground-State Elemental Crystals
K. Lejaeghere et al., Crit. Rev. Solid State Mater. Sci. 39, 1 (2014)
http://dx.doi.org/10.1080/10408436.2013.772503 (open access)

Table I Ground-state crystal structures for all elements up to radon. Both the space group number and the
Pearson notation are given (with hRe standing for @ atoms in the hezagonal setting of the rhombohedral
unit cel

. e
Test set that was used : o
B ¢ [ N 0 I F N
166 | 194 | 205 | 1 | 15 | 225
w3 | hea | cps | msa | mss | cra
B
225 25
os8 | or12s
25 190 290 25 | s 15 25
| o2 ase Rs
25 190 11 | 225 | 225 27 15 25
| w2 < w | s
He h Bi

P} i

Appendix: DFT-accuracy vs. experiment / accuracy of various basis sets

120

100 , Equilibrium volume
/ (see exercises)

80 /
60 i imation by 3.8 %

40 / > = Residual error bar = 1.1 A¥at

Experimental V, [A/at]

40 60 80 100 120
Calculated V, [A%/at]
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Appendix: DFT-accuracy vs. experiment / accuracy of various basis sets

500

400

Bulk modulus

(see exercises)
300 -

Systematic underestimation by 4.7 %

200 Residual error bar = 15 GPa

Experimental B, [GPa]

Cr mn co i C;
m
Ri In

c Ti
m
¥ [

Comparing 2 methods/codes :
E

[AE2(V)dV
AV

code 2

mev I code 1

Vv

Tigure 6. (Color online) The EOS parameters can
differ significantly, while the E(V) curves them-
selves are very similar. In that case the area be-
tween the two functions is better indicator of the
overall deviation

VASP vs. WIEN2k
PAW vs. APW+lo

A(VASP) = 1.8 meV/atom

PAW APW+lo

20



VASP vs. WIEN2k
PAW vs. APW+lo

1.8 meV/atom

A(VASP) =

T vas WIEN
=

14.60 14.47
2985 3014
455 456

b tnitio
achage
K eviva. mation

PAW APW+lo

VASP vs. WIEN2k
PAW vs. APW+lo

A(VASP) = 1.8 meV/atom

VASP  WIEN2k
52,65 5221
0.8 0.7
735 784

PAW APW+lo
5 mV(exp)-V(DFT¥)
40
” V(WIEN2k)-V(VASP)
T 3
2 30
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w 25
o
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-
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5
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GPAW vs. WIENZ2k
PAW vs. APW+lo

A(GPAW) = 3.3 meV/atom

PAW APW+lo

GPAW vs. WIEN2k
PAW vs. APW+lo

A(GPAW) = 3.3 meV/atom

n Ga G As

GPAW WIEN2k
1410 13.81

3109 3154

490 496

Bo
8,

PAW APW+lo

many more tests are ongoing...

coge Versionsasis Potentals Avalue  Authors
181 LAPWAPWHIO fun 0 meV/atoms. Cottenier
80 plane vaves OTFG CASTEP 8.0 0s CASTEP [7]
ABINT® 773 plane waves PAW JTH V0.2 0 F. Jollet and M.
meviatom Torrent
ASP @ 5212 plane vaves PAW 2012 07 K. Lejaeghere
RSPHS 1672 LMTO ful 0 RSPLS]
ASP® 52.12 plane waves PAW 2012 GW-ready 0 K. Lejacghere
FLEUR® 025 LAPW ul 0 FLEUR[S)
FPLO 1400 enhanced local orbials + fixed compact  full 08 FPLOE)

support radius meViatom

14.00 enhanced local orbitals ful 10 FPLO[g]

ABINIT® 753 plane waves. PAW 12 F. Jollet et al. 3]

http://molmod.ugent.be/DeltaCodesDFT
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Appendix: DFT-accuracy vs. experiment / accuracy of various basis sets

Conclusions:

*These error bars give a quantitative estimate of
the predicitive power of DFT (PBE)

* PAW as well as LAPW (APW+lo) lead to
very similar predictions

http://dx.doi.org/10.1080/10408436.2013.772503
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