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
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DFT

BASIS SETS : RECAPITULATION

Kohn-Sham equations

formal

practical

basis set
transformation to

algebra (convenient) HC=SCE
matrix diagonalization

HK1
HK2



local basis set
plane waves +
pseudopotentials

augmented methods

XC-functional

 small basis set
 physical insight
 not orthogonal
 depends on atomic position
 BSSE? completeness?

 not so small
 less intuitive
 orthogonal
 position-independent
 effect of PP?
 periodic  crystals

 not so small
 more intuitive
 not orthogonal
 position independent
 very accurate (some)
 periodic  crystals
 core information (some)
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VOLUME PARTITIONING

The reason for the large size of the plane wave basis sets was the steep features in the wave functions :

The steeper the feature you want to
describe, the more basis functions
(plane waves) are needed.

Back-of-the-envelop estimate for
Ca-3s: 108 plane waves.
Diagonalize 108x108 matrices...?

The steepest features appear near
to the nuclei:
 get rid of them by PP (see before)

 use basis functions that have such
steep features built-in  (today)
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‘near’ to a nucleus:
• electrons behave almost
as in a free atom (steep changes,
many plane waves would be 
needed)
• most efficient to use
atom-like basis functions
here

far away from the nucleus:
• electron density is much smoother
(‘almost constant’ = free electron)
• much less plane waves needed

 Partition space into a region of atom-like
behaviour and a region of free-electron-like
behaviour.

Identifies which
sphere/atom

VOLUME PARTITIONING
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VOLUME PARTITIONING

If those volumes are spheres:
muffin tin spheres.

VOLUME PARTITIONING

We will look at a few methods that realize 
in various ways this concept of volume partitioning:

augmented plane wave methods
• APW
• LAPW
• APW+lo
• LMTO

projector augmented plane wave method
• PAW
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THE APW METHOD

This was the final expression for a plane wave basis set:

plane wave basis function

THE APW METHOD

Definition of an Augmented Plane Wave basis function:

This was the final expression for a plane wave basis set:

plane wave basis function

THE APW METHOD

Definition of an Augmented Plane Wave basis function:

plane wave

spherical harmonic

numerical solution of free-atom
Schrodinger equation (no boundary
conditions)

not yet determined set
of coefficients

linear combination of
several atom-like
functions

depends on which sphere
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THE APW METHOD

Definition of an Augmented Plane Wave basis function:

Cartoon : APW function

THE APW METHOD

Definition of an Augmented Plane Wave basis function:

?

THE APW METHOD

Definition of an Augmented Plane Wave basis function:

?

Expand the plane waves in Bessel functions around the center of the muffin tin sphere:

Choose the A-coefficients such that term by term matches at the sphere boundary:

...and truncate the expansion at some              (criterium: numerical stability).
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THE APW METHOD

Definition of an Augmented Plane Wave basis function:

Energy-dependent...!?
What does this mean?

THE APW METHOD

Definition of an Augmented Plane Wave basis function:

Energy-dependent...!?
What does this mean?

APW’s will be an efficient basis set to describe the eigenstate         only if                     .

But        is a result of our solution, hence we cannot even write down the basis set before
the problem is solved...!?

time-consuming iterative procedure needed.

THE APW METHOD

This inner loop numerically searches one by one
the roots of the secular equation, the latter being 
possibly a nasty function with asymptotes etc.
 time-consuming

Every time you go through the outer loop, you 
obtain one eigenstate. The price: as many matrix 
diagonalizations as the number of times you had 
to go through the inner loop.

(a third loop for the
self-consistent procedure
is not shown !)
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THE APW METHOD

This inner loop numerically searches one by one
the roots of the secular equation, the latter being 
possibly a nasty function with asymptotes etc.
 time-consuming

Every time you go through the outer loop, you 
obtain one eigenstate at this    . The price: as 
many matrix diagonalizations as the number of 
times you had to go through the inner loop.

Although APW is very accurate...

... it is extremely slow.

Can we speed it up, without loosing
too much accuracy?

(a third loop for the
self-consistent procedure
is not shown !)
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THE LAPW METHOD

Taylor-expand the u-function around a guessed energy E0:

THE LAPW METHOD

Taylor-expand the u-function around a guessed energy E0:

unknown
known

Put this into the definition of an APW:

Linearized Augmented Plane Wave basis function (LAPW).

THE LAPW METHOD

Linearized Augmented Plane Wave basis function (LAPW).

energy-independent

Two sets of coefficients:
fixed by requiring that at the sphere boundary 
value and slope should match to the spherical
expansion of plane waves.
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THE LAPW METHOD

Further details:
 E0 should be close to the eigenvalues. Therefore, use different E-values for different

atoms (), and make them   -dependent:

THE LAPW METHOD

Further details:
 E0 should be close to the eigenvalues. Therefore, use different E-values for different

atoms (), and make them   -dependent:

 depends on the atom (or sphere)
 no     or      dependence because not connected to plane waves
 A-B-C determined by normalization, zero value and zero slope at sphere boundary (=confined within sphere)

 For a given    , several eigenvalues can appear. Example for    =1 in Ga:
4p : a valence orbital, allow full freedom and describe by LAPW  take            near to this (guessed) eigenvalue 
3p : a ‘semi-core’ orbital: almost as in a free atom, but not completely. Describe by Local Orbital basis functions:
2p : a core orbital: as in a free atom, at most with shifted eigenvalues. Free atom calculation.

27

THE LAPW METHOD

Having now a basis set of LAPW’s and LO’s, we proceed with the same scheme 
as for PW+PP :

Calculate the matrix elements 
of H and S

Diagonalize

determine 
the corresponding LAPW

Find coefficients         for as 
many eigenfunctions  (same    , 
various n) as the matrix dimension

Determine accuracy by 
choosing     and  

(the outer loop for the
self-consistent procedure
is not shown !)
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THE LAPW METHOD

Having now a basis set of LAPW’s and LO’s, we proceed with the same scheme 
as for PW+PP :

Calculate the matrix elements 
of H and S

Diagonalize

determine 
the corresponding LAPW

Find coefficients         for as 
many eigenfunctions  (same    , 
various n) as the matrix dimension

Determine accuracy by 
choosing     and  

(the outer loop for the
self-consistent procedure
is not shown !)

Instead of 1 solution per many diagonalizations 
(as for APW), you get many solutions for each 
diagonalization.

enormous gain in speed
almost no loss in accuracy (linearization
error is small)

THE APW+lo METHOD (just briefly)

The present state-of-the-art in this family of methods preserves the accuracy of LAPW, but
needs a smaller basis set size (10-fold speed-up).

3 types of basis functions are used (not much details here):

APW

local orbital
(lo)

Local Orbital
(LO)

PP+PW vs. LAPW

 On average, the speed of both methods is comparable

 There are good general-purpose implementations for both of them

 Why would you use PW+PP?
• “everyone does”  many benchmark cases
• its mathematics are simple  new theory developments are usually 

implemented first in PP codes (e.g. still no stress tensor formalism within LAPW)

 Why would you use LAPW?
• You want to start calculating right away, without having to test PP’s first
• “the golden standard for accuracy”  whenever there is any doubt about a subtle effect, 

LAPW will give the ultimate DFT answer (for that XC-functional)
• straightforward access to effects near the nucleus 

(core level shifts, hyperfine interactions,...)

 Often this is the best advice:
“Use the method that you know best.”
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THE LMTO METHOD (just briefly)

A method that has philosophy similar to LAPW is the Linearized Muffin Tin Orbital 
method (LMTO). Rather than connecting the atomic solutions inside the spheres 
to plane waves, it connects them to Hankel functions.

In particular for close-packed solids, LMTO can be very fast.

CONTENT OVERVIEW

o Basis sets: recapitulation

o Volume partitioning

o augmented plane wave methods

o The APW method

o The LAPW method

o The APW+lo method (briefly)

o The LMTO method (briefly)

o The projector augmented wave method (PAW)

o Comparisons, codes, literature
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THE PAW METHOD

What does it want to achieve ?

 re-write a single-particle Kohn-Sham orbital as a sum of three contributions,
each of which can conveniently be expressed in a basis.

THE PAW METHOD

What does it want to achieve ?

 re-write a single-particle Kohn-Sham orbital as a sum of three contributions,
each of which can conveniently be expressed in a basis.

all-electron (Kohn-Sham)
wave function

defined everywhere

steep inside spheres
smooth outside spheres

(no suitable basis,
that’s the problem…)

pseudo
wave function

defined everywhere

smooth everwhere

expressed in plane
wave basis

all-electron 1-center
wave function

defined inside spheres

steep inside spheres

expressed in partial
wave basis

pseudo 1-center
wave function

defined inside spheres

smooth inside spheres

expressed in pseudo 
partial wave basis

(slide by P. Blöchl)
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p- orbital of a Cl2 molecule

THE PAW METHOD

THE PAW METHOD

How does it achieve this ?

 PAW Ansatz :

By making a choice for each of the three numbered objects, 
the re-writing we are aiming for can be unambiguously defined.

a = sum over atoms in the unit cell (or ‘augmentation spheres’)
i = sum over basis functions

THE PAW METHOD

How does it achieve this ?

 PAW Ansatz :

pseudo wave function

• outside the spheres:
• identical to the all-electron wave function (which we don’t know yet)
• surely smooth, as the all-electron wave function is smooth there

• inside the spheres:
• different from the all-electron wave function
• smooth

 How the pseudo wave function will look like, 
will be fully determined by the three choices we’ll make.
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THE PAW METHOD

How does it achieve this ?

 PAW Ansatz :

difference between all-electron and pseudo wave functions

THE PAW METHOD

How does it achieve this ?

 PAW Ansatz :

difference between all-electron and pseudo wave functions

alternative way to express this difference: 

How these transformation
operators look like, is not yet
defined here.

make a choice for the all-electron partial waves

• outside the spheres: 
• it will not matter how they look like, 

continue the behaviour they had inside the spheres:

• inside the spheres:
• anything that can serve  as efficient basis functions for

the steep part of the all-electron wave function
• often taken as solutions of the free atom Schrödinger equation

THE PAW METHOD

How does it achieve this ?

 PAW Ansatz :
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THE PAW METHOD

How does it achieve this ?

 PAW Ansatz :

You can use the (as yet unspecified) transformation operators to produce 
smooth pseudo-versions of the all-electron partial waves: 

Alternatively, by making a choice for these pseudo partial waves,
the transformation operators are defined:

Therefore…

THE PAW METHOD

How does it achieve this ?

 PAW Ansatz :

make a choice for the pseudo partial waves

• outside the spheres: 
• choose them to be identical to the all-electron partial waves

• inside the spheres:
• choose them such that they can serve as a basis

for the pseudo wave function inside the sphere:

THE PAW METHOD

How does it achieve this ?

 PAW Ansatz :

(omitting the proof/derivation here) the expansion coefficients are determined
by  applying appropriate projectors to the pseudo wave function. There is
quite some freedom to choose these element-specific projectors. 
The choice made determines how smooth the pseudo wave function will be.
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THE PAW METHOD

How does it achieve this ?

 PAW Ansatz :

By defining

the all-electron 1-center functions
(steep, inside sphere, expressed
in a partial wave basis)

and
the pseudo 1-center functions
(smooth, inside sphere, expressed
in a pseudo partial wave basis)

we find that the Ansatz leads to the desired expression:

THE PAW METHOD

How does it achieve this ?

 PAW Ansatz :

you know the transformation operator and can replace        in the Kohn-Sham equations by             .
This leads to a transformed KS-equation, with        as the unknown. Solve it for        , after
which you can finally fill out all items in the right-hand side of the above expression. 

THE PAW METHOD

Practical procedure :

After having made the required choices :
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THE PAW METHOD

Important issue :

The choice of the element-dependent projector functions (the “P” in PAW) determines how
smooth the pseudo wave function will be, and hence how small the plane wave basis (and the
speed of the calculation) will be.

Generating suitable projectors is partly a kind of art, comparable to the art of generating
good pseudopotentials.

Well-tested tabulations of projector functions are either a propietary part of code (e.g. for VASP),
or are freely available for use across codes (e.g. http://users.wfu.edu/natalie/papers/pwpaw/newperiodictable/ ).

An extensive discussion on PAW generation can be found at http://arxiv.org/pdf/1309.7274.pdf .

DFT

BASIS SETS : RECAPITULATION

Kohn-Sham equations

formal

practical

basis set
transformation to

algebra (convenient) HC=SCE
matrix diagonalization

HK1
HK2



local basis set
plane waves +
pseudopotentials

augmented methods

XC-functional

 small basis set
 physical insight
 not orthogonal
 depends on atomic position
 BSSE? completeness?

 not so small
 less intuitive
 orthogonal
 position-independent
 effect of PP?
 periodic  crystals

 not so small
 more intuitive
 not orthogonal
 position independent
 very accurate (some)
 periodic  crystals
 core information (some)

PAW
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LAPW codes

WIEN2k
http://www.wien2k.at

review paper
K. Schwarz, Journal of Solid State Chemistry 176 (2003) 319
http://dx.doi.org/10.1016/S0022-4596(03)00213-5

EXCITiNG
http://exciting-code.org/

FLEUR
www.flapw.de

ELK
http://elk.sourceforge.net/

PAW codes
VASP
http://cms.mpi.univie.ac.at/vasp/

review paper
Computer Physics Communications 177 (2007) 6-13

ABINIT
http://www.abinit.org/

review paper
Computer Physics Communications 180 (2009) 2582-2615

atompw / pwpaw
http://www.wfu.edu/~natalie/papers/pwpaw/man.html

review paper
Computer Physics Communications 135 (2001) 329–347
Computer Physics Communications 135 (2001) 348–376

CP-PAW
https://www2.pt.tu-clausthal.de/paw/

review paper
Physical Review B 50 (1994) 17953-17979

Further reading

Density Functional Theory and the family of (L)APW-methods: a 
step-by-step introduction
S. Cottenier
Instituut voor Kern- en Stralingsfysica, KU Leuven, Belgium (2002) 
ISBN 90-807215-1-4
http://www.wien2k.at/reg_user/textbooks (free download)

+ references therein.

Electronic structure methods: Augmented Waves, 
Pseudopotentials and the Projector Augmented Wave Method
Peter E. Bloechl, Johannes Kaestner, Clemens J. Foerst 
chapter in "Handbook of Materials Modeling", Sidney Yip (Ed.), Springer (2005), 
ISBN 1-4020-3287-0 
http://arxiv.org/abs/cond-mat/0407205 (free download)

+ references therein

Ch. 2: PW+PP 
Ch. 3-5: (L)APW(+lo)
Ch. 6: PAW
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Further reading

First-principles simulation: ideas, illustrations and the
CASTEP code
M D Segall, Philip J D Lindan, M J Probert, C J Pickard, 
P J Hasnip, S J Clark and M C Payne
J. Phys.: Condens. Matter 14 (2002) 2717–2744
http://stacks.iop.org/cm/14/2717 (available on Minerva)

+ references therein

Excellently written, without much of the usual technical slang.
Recommended reading, as a kind of text book that summarizes much of
this course up to here.

Appendix: DFT-accuracy vs. experiment / accuracy of various basis sets

Source: Error Estimates for Solid-State Density-Functional Theory Predictions: 
An Overview by Means of the Ground-State Elemental Crystals
K. Lejaeghere et al., Crit. Rev. Solid State Mater. Sci. 39, 1 (2014)
http://dx.doi.org/10.1080/10408436.2013.772503 (open access)

Test set that was used :

Appendix: DFT-accuracy vs. experiment / accuracy of various basis sets

Equilibrium volume
(see exercises)

Systematic overestimation by 3.8 %
Residual error bar = 1.1 A3/at
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Appendix: DFT-accuracy vs. experiment / accuracy of various basis sets

Bulk modulus
(see exercises)

Systematic underestimation by 4.7 %
Residual error bar = 15 GPa

Comparing 2 methods/codes :

code 1

code 2

APW+lo

VASP vs. WIEN2k
PAW vs. APW+lo

PAW
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APW+lo

VASP WIEN2k
V0 14.60 14.47
B0 298.5 301.4
B1 4.55 4.56

VASP vs. WIEN2k
PAW vs. APW+lo

PAW

APW+lo

VASP WIEN2k
V0 52.65 52.21
B0 0.8 0.7
B1 7.35 7.84

VASP vs. WIEN2k
PAW vs. APW+lo

PAW
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APW+lo

GPAW vs. WIEN2k
PAW vs. APW+lo

PAW

APW+lo

GPAW WIEN2k
V0 14.10 13.81
B0 310.9 315.4
B1 4.90 4.96

PAW

GPAW vs. WIEN2k
PAW vs. APW+lo

many more tests are ongoing…

http://molmod.ugent.be/DeltaCodesDFT
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Appendix: DFT-accuracy vs. experiment / accuracy of various basis sets

Conclusions:

•These error bars give a quantitative estimate of 
the predicitive power of DFT (PBE)

• PAW as well as LAPW (APW+lo) lead to 
very similar predictions

http://dx.doi.org/10.1080/10408436.2013.772503


