

the need for augmentation

	http://molmod.ugent.be
Stefaan.Cottenier@ugent.be	http://www.ugent.be/ea/dmse/en
Technologiepark 903, Zwijnaarde	my talks on Youtube: http://goo.gl/P2b1Hs

DFT	formal	$\stackrel{\rm HK1}{\rm HK2} \clubsuit \rho(\vec{r})$
Kohn-Sham equations	practical	$\hat{H}_{KS}\phi_i = \epsilon_i\phi_i$ XC-functional
basis set	transformation to algebra (convenient)	$\phi_i = \sum_{j=1}^{\infty} c_{ij} \chi_j$ HC=SCE matrix diagonalization
		matrix diagonalizatior

DFT	formal	$\stackrel{\rm HK1}{\rm HK2} \clubsuit \rho(\vec{r})$
Kohn-Sham equations	practical	$\hat{H}_{KS}\phi_i = \epsilon_i\phi_i$ XC-functional
basis set	transformation to algebra (convenient)	$ \phi_i = \sum_{j=1}^{\infty} c_{ij} \chi_j $ HC=SCE matrix diagonalization
local basis set	plane waves + pseudopotentials	augmented methods
© small basis set	not so small	⊗ not so small
Ophysical insight	Iess intuitive	Interpreter int
Onot orthogonal	orthogonal	Inot orthogonal
epends on atomic position	consistion-independent	c position independent
BSSE? completeness?	effect of PP?	very accurate (some)
	💮 noriadia 🎝 arustala	O neriodic -> crystals
	periodic - crystais	

volume partitioning

http://molmod.ugent.be Stefaan.Cottenier@ugent.be http://www.ugent.be/ea/dmse/en Technologiepark 903, Zwijnaarde my talks on Youtube: http://goo.gl/P2b1Hs

VOLUME PARTITIONING

We will look at a few methods that realize in various ways this concept of volume partitioning:

augmented plane wave methods • APW • LAPW • APW+lo

• LMTO

projector augmented plane wave method • PAW

Stefaan.Cottenier@ugent.be Technologiepark 903, Zwijnaarde

http://molmod.ugent.be http://www.ugent.be/ea/dmse/en my talks on Youtube: http://goo.gl/P2b1Hs

The APW METHOD
This was the final expression for a plane wave basis set:

$$\Psi_{\vec{k}}^{n}(\vec{r}') = \sum_{\vec{K}} c_{\vec{K}}^{n,\vec{k}} e^{i(\vec{k}+\vec{K})\cdot\vec{r}}$$

$$= \sum_{\vec{K}} c_{\vec{K}}^{n,\vec{k}} \phi_{\vec{K}}^{\vec{k}}(\vec{r})$$
plane wave basis function

the LAPW method

 http://molmod.ugent.be

 Stefaan.Cottenier@ugent.be

 Technologiepark 903, Zwijnaarde

<page-header><section-header><section-header><text><text><section-header><section-header><text>

$$\begin{array}{l} \hline \textbf{THE LAPW METHOD} \\ \hline \textbf{Taylor-expand the u-function around a guessed energy E_0:} \\ u_\ell^\alpha(r', \, \epsilon_k^n) &= u_\ell^\alpha(r', \, E_0) + (E_0 - \epsilon_k^n) \underbrace{\frac{\partial u_\ell^\alpha(r', \, E)}{\partial E}}_{u_\ell^\alpha(r', E_0)} \bigg|_{E=E_0} \\ + O(E_0 - \epsilon_k^n)^2 \end{array}$$

The present state-of-the-art in this family of methods preserves the accuracy of LAPW, but needs a smaller basis set size (10-fold speed-up).

 $\mathsf{APW} \left\{ \sum_{\ell,m} A^{\alpha,\vec{k}+\vec{K}}_{\ell m} u^{\alpha}_{\ell}(r',E^{\alpha}_{1,\ell}) Y^{\ell}_{m}(\hat{r}') \quad \vec{r} \in S_{\alpha} \right.$

 $\vec{r} \in I$

3 types of basis functions are used (not much details here): $\int \frac{1}{\sqrt{V}} e^{i(\vec{k}+\vec{K})\cdot\vec{r}}$

0

PP+PW vs. LAPW

THE APW+Io METHOD (just briefly)

 $\phi_{\vec{K}}^{\vec{k}}(\vec{r}) =$

 $\phi^{\ell m}_{\alpha, \, lo}(\vec{r}) =$

 $\phi^{\ell m}_{\alpha,\,LO}(\vec{r}) \ =$

local orbital (lo)

- On average, the speed of both methods is comparable
- There are good general-purpose implementations for both of them
- Why would you use PW+PP?
 • "everyone does" → many benchmark cases its mathematics are simple → new theory developments are usually implemented first in PP codes (e.g. still no stress tensor formalism within LAPW)
- Why would you use LAPW?
 You want to start calculating right away, without having to test PP's first
 'the golden standard for accuracy'

 Anenever there is any doubt about a subtle effect, LAPW will give the ultimate DFT answer (for that XC-functional)
 straightforward access to effects near the nucleus

 (core level shifts, hyperfine interactions,...)
- Often this is the best advice:
 "Use the method that you know best."

THE LMTO METHOD (just briefly)

A method that has philosophy similar to LAPW is the Linearized Muffin Tin Orbital method (LMTO). Rather than connecting the atomic solutions inside the spheres to **plane waves**, it connects them to **Hankel functions**.

In particular for close-packed solids, LMTO can be very fast.

CONTENT OVERVIEW

- o Basis sets: recapitulation
- o Volume partitioning
- o augmented plane wave methods
 - o The APW method
 - o The LAPW method
 - o The APW+lo method (briefly)
 - o The LMTO method (briefly)
- o The projector augmented wave method (PAW)
- o Comparisons, codes, literature

Stefaan.Cottenier@ugent.be Technologiepark 903, Zwijnaarde http://molmod.ugent.be http://www.ugent.be/ea/dmse/en my talks on Youtube: http://goo.gl/P2b1Hs

THE PAW METHOD

 What does it want to achieve ?

 re-write a single-particle Kohn-Sham orbital as a sum of three contributions, each of which can conveniently be expressed in a basis.

$$\psi_n(\vec{r}) = \tilde{\psi}_n(\vec{r}) + \sum_a \psi_n^a(\vec{r}) - \sum_a \tilde{\psi}_n^a(\vec{r})$$

THE PAW METHOD												
What does it want to achieve ?												
→ re-write a single-particle Kohn-Sham orbital as a sum of three contributions, each of which can conveniently be expressed in a basis.												
$\psi_n(\vec{r}) = \tilde{\psi}_n(\vec{r}) + \sum_a \psi_n^a(\vec{r}) - \sum_a \tilde{\psi}_n^a(\vec{r})$												
all-electron (Kohn-Sham) wave function	pseudo wave function	all-electron 1-center wave function	pseudo 1-center wave function									
defined everywhere	defined everywhere	defined inside spheres	defined inside spheres									
steep inside spheres smooth outside spheres	smooth everwhere	steep inside spheres	smooth inside spheres									
(no suitable basis, that's the problem)	expressed in plane wave basis	expressed in partial wave basis	expressed in pseudo partial wave basis									

THE PAW METHOD How does it achieve this ? \rightarrow PAW Ansatz : $\psi_n(\vec{r}) = \tilde{\psi}_n(\vec{r}) + \sum_a \sum_i \left(\frac{\phi_i^a(\vec{r})}{1} - \frac{\tilde{\phi}_i^a(\vec{r})}{2} \right) \left\langle \underbrace{\tilde{p}_i^a}_{3} \middle| \tilde{\psi}_n \right\rangle$ By making a choice for each of the three numbered objects, the re-writing we are aiming for can be unambiguously defined. a = sum over atoms in the unit cell (or 'augmentation spheres') i = sum over basis functions

$$\begin{array}{rcl} \hline \textbf{THE PAW METHOD} \\ \text{How does it achieve this ?} \\ & \twoheadrightarrow \text{PAW Ansatz :} \\ \psi_n(\vec{r}) & = & \tilde{\psi}_n(\vec{r}) & + \underbrace{\sum_a \sum_i \left(\underbrace{\phi_i^a(\vec{r})}_1 - \underbrace{\tilde{\phi}_i^a(\vec{r})}_2 \right) \left\langle \underbrace{\tilde{p}_i^a}_3 \middle| \tilde{\psi}_n \right\rangle}_{\text{difference between all-electron and pseudo wave functions}} \end{array}$$

$$\begin{array}{rcl} \hline \textbf{THE PAW METHOD} \\ & \text{How does it achieve this ?} \\ & \clubsuit \ \textbf{PAW Ansatz :} \\ & \psi_n(\vec{r}) & = & \tilde{\psi}_n(\vec{r}) \ + \underbrace{\sum_a \sum_i \left(\underbrace{\phi_i^a(\vec{r})}_{1} \ - & \underbrace{\tilde{\phi}_i^a(\vec{r})}_{2} \right) \ \left\langle \underbrace{\tilde{p}_i^a}_{3} \middle| \ \tilde{\psi}_n \right\rangle}_{\text{difference between all-electron and pseudo wave functions} \\ & \text{alternative way to express this difference:} \\ & \psi_n(\vec{r}) \ = \ \underbrace{\left(1 \ + \ \sum_a \mathcal{T}^a \right)}_{\mathcal{T}} \ \widetilde{\psi}_n(\vec{r}) \qquad \begin{array}{c} \text{How these transformation} \\ & \text{operators look like, is not yet} \\ & \text{defined here.} \end{array} \end{array}$$

THE PAW METHOD
How does it achieve this ?

$$\rightarrow \text{ PAW Ansatz}:$$

$$\psi_n(\vec{r}) = \tilde{\psi}_n(\vec{r}) + \sum_a \sum_i \left(\underbrace{\phi_i^a(\vec{r})}_{1} - \tilde{\phi}_i^a(\vec{r}) \right)_2 \left\langle \underbrace{\tilde{p}_i^a}_{3} \middle| \tilde{\psi}_n \right\rangle$$
You can use the (as yet unspecified) transformation operators to produce smooth pseudo-versions of the all-electron partial waves:

$$\phi_i^a(\vec{r}) = (1 + \mathcal{T}^a) \tilde{\phi}_i^a(\vec{r})$$
Alternatively, by making a choice for these pseudo partial waves, the transformation operators are defined:

$$\mathcal{T}^a \tilde{\phi}_i^a = \phi_i^a - \tilde{\phi}_i^a$$

Therefore...

$$\begin{array}{l} \label{eq:theta} \hline \textbf{THE PAW METHOD} \\ \mbox{How does it achieve this ?} \\ \hline \textbf{How does it achieve this ?} \\ \hline \textbf{P} AW Ansatz : \\ \hline \psi_n(\vec{r}) & = & \tilde{\psi}_n(\vec{r}) \ + \ \sum_a \sum_i \left(\frac{\phi_i^a(\vec{r})}{1} \ - \ \tilde{\phi}_i^a(\vec{r}) \right) \ \left\langle \begin{array}{c} \tilde{p}_i^a \\ \tilde{p}_i^a \end{array} \middle| \tilde{\psi}_n \right\rangle \\ \hline \textbf{By defining} \\ & \sum_i \left\langle \tilde{p}_i^a \ \middle| \tilde{\psi}_n \right\rangle \ \phi_i^a(\vec{r}) \ = \ \psi_n^a(\vec{r}) \\ \mbox{and} \\ & \sum_i \left\langle \tilde{p}_i^a \ \middle| \tilde{\psi}_n \right\rangle \ \tilde{\phi}_i^a(\vec{r}) \ = \ \tilde{\psi}_n^a(\vec{r}) \\ \mbox{the pseudo 1-center functions} \\ (\text{steep, inside sphere, expressed} \\ \text{in a partial wave basis}) \\ \mbox{and} \\ & \sum_i \left\langle \tilde{p}_i^a \ \middle| \tilde{\psi}_n \right\rangle \ \tilde{\phi}_i^a(\vec{r}) \ = \ \tilde{\psi}_n^a(\vec{r}) \\ \mbox{the pseudo 1-center functions} \\ (\text{smooth, inside sphere, expressed} \\ \text{in a pseudo partial wave basis}) \\ \end{tabular} \\ \end{tabular}$$

THE PAW METHOD

 Practical procedure :

 After having made the required choices :

$$\psi_n(\vec{r}) = \tilde{\psi}_n(\vec{r}) + \sum_a \sum_i \left(\underbrace{\phi_i^a(\vec{r})}_{i=1} - \underbrace{\phi_i^a(\vec{r})}_{2} \underbrace{(\tilde{p}_i^a)}_{3} \underbrace{\psi_n}_{3} \right)$$

 you know the transformation operator and can replace ψ_n in the Kohn-Sham equations by $\mathcal{T}\vec{\psi}_n$.

 This leads to a transformed KS-equation, with $\vec{\psi}_n$ as the unknown. Solve it for ψ_n , after which you can finally fill out all items in the right-hand side of the above expression.

THE PAW METHOD

$$\psi_n(\vec{r}) = \tilde{\psi}_n(\vec{r}) + \sum_a \sum_i \left(\underbrace{\phi_i^a(\vec{r})}_1 - \underbrace{\tilde{\phi}_i^a(\vec{r})}_2 \right) \left\langle \underbrace{\tilde{p}_i^a}_3 \tilde{\psi}_n \right\rangle$$

The choice of the element-dependent projector functions (the "P" in PAW) determines how smooth the pseudo wave function will be, and hence how small the plane wave basis (and the speed of the calculation) will be.

Generating suitable projectors is partly a kind of art, comparable to the art of generating good pseudopotentials.

Well-tested tabulations of projector functions are either a propietary part of code (e.g. for VASP), or are freely available for use across codes (e.g. http://users.wfu.edu/natale/papers/pwpaw/newperiodictable/).

An extensive discussion on PAW generation can be found at $\underline{http://arxiv.org/pdf/1309.7274.pdf}$.

DFT	formal	$\stackrel{\rm HK1}{\rm HK2} \clubsuit \rho(\vec{r})$
Kohn-Sham equations	practical	$\hat{H}_{KS}\phi_i = \epsilon_i\phi_i$ XC-functional
basis set	transformation to algebra (convenient)	$\phi_i = \sum_{j=1}^{\infty} c_{ij} \chi_j$ HC=SCE matrix diagonalization
local basis set	plane waves + pseudopotentials	W augmented methods
	@ ant as arrall	🙁 not so small
small basis set	lo not so small	
© small basis set © physical insight	 not so small less intuitive 	© more intuitive
 small basis set physical insight not orthogonal 	 not so small less intuitive orthogonal 	© more intuitive © not orthogonal
 small basis set physical insight not orthogonal depends on atomic position 	 not so small less intuitive orthogonal position-independent 	© more intuitive © not orthogonal © position independent
 small basis set physical insight not orthogonal depends on atomic position BSSE? completeness? 	 Inot so small Iess intuitive orthogonal position-independent effect of PP? 	© not othogonal © not othogonal © position independent © very accurate (some)
 small basis set physical insight not orthogonal depends on atomic position BSSE? completeness? 	 ⊘ not so small ⊗ less intuitive © orthogonal © position-independent ⊗ effect of PP? © periodic → crystals 	© more intuitive © nore intuitive © not orthogonal © position independent © very accurate (some) © periodic → crystals

Stefaan.Cottenier@ugent.be Technologiepark 903, Zwijnaarde http://molmod.ugent.be http://www.ugent.be/ea/dmse/en my talks on Youtube: http://goo.gl/P2b1Hs

http://cms.mpi.univie.ac.at/vasp/ review paper Computer Physics Communications 177 (2007) 6-13 http://www.abinit.org/ review paper Computer Physics Communications 180 (2009) 2582-2615 https://www2.pt.tu-clausthal.de/paw/ review paper Physical Review B 50 (1994) 17953-17979 atompw / pwpaw http://www.wfu.edu/~natalie/papers/pwpaw/man.html

Further reading

PAW codes VASP

ABINIT

CP-PAW

review paper

Computer Physics Communications 135 (2001) 329–347 Computer Physics Communications 135 (2001) 348–376

Density Functional Theory and the family of (L)APW-methods: a step-by-step introduction S. Cottanier Institut voor Kern- en Stralingsfysica, KU Leuven, Belgium (2002) ISBN 90-807215-1-4 http://www.wien2k.at/reg_user/textbooks (free download) + references therein.

Ch. 2: PW+PP Ch. 3-5: (L)APW(+lo) Ch. 6: PAW

Electronic structure methods: Augmented Waves, Pseudopotentials and the Projector Augmented Wave Method Peter E. Bloechl, Johannes Kaestner, Clemens J. Foerst chapter in "Handbook of Materials Modeling", Sidney Yip (Ed.), Springer (2005), ISBN 1-4020-3287-0 http://arxiv.org/abs/cond-mat/0407205 (free download)

+ references therein

Further reading

First-principles simulation: ideas, illustrations and the CASTEP code M D Segall, Philip J D Lindan, M J Probert, C J Pickard, P J Hasnip, S J Clark and M C Payne J. Phys.: Condens. Matter 14 (2002) 2717-2744 http://stacks.lop.org/cm/14/2717 (available on Minerva)

+ references therein

Excellently written, without much of the usual technical slang. Recommended reading, as a kind of text book that summarizes much of this course up to here.

Apper	Appendix: DFT-accuracy vs. experiment / accuracy of various basis sets																
Source: Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals K. Lejaeghere et al., Crit. Rev. Solid State Mater. Sci. 39, 1 (2014) http://dx.doi.org/10.1080/10408436.2013.772503 (open access) Table I. Ground-state crystal structures for all elements up to radon. Both the space group number and the Pearson notation are given (with hRx standing for x atoms in the hexagonal setting of the rhombohedral unit cell)																	
H 194 hP4	xell)) Test set that was used : 194															
Li	Be											В	С	N	0	F	Ne
166	194											166	194	205	12	15	225
hR9	hP2											hR36	hP4	cP8	mS4	m\$8	cF4
Na	Mg	1										AI		P	5	CI	Ar
166	194											225	227	64	70	64	225
hR9	hP2											cF4	cF8	058	oF128	058	cF4
К	Ca	Sc	Ti	v	Cr	Min	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
229	225	194	194	229	229	217	229	194	225	22.5	194	64	227	166	152	64	225
c12	cF4	hP2	hP2	ci2	cl2	c158	cl2	hP2	cF4	cF4	hP2	058	cF8	hR6	hP3	058	cF4
Rb	Śr	Ŷ	Zr	Nb	Mo	Ťc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
229	225	194	194	229	229	194	194	225	225	225	194	139	227	166	152	64	225
c12	cF4	hP2	hP2	ciZ	c12	hP2	hP2	cF4	cF4	cF4	hP2	t12	cF8	hR6	hP3	058	cF4
CS	Ba	Lu	HI	Ta	Ŵ	Re	Os.	lr	Þt	Au	Hg	ŤI	Pb	Bi	Po	At	Rn
229	229	194	194	229	229	194	194	225	225	22.5	139	194	225	166	221		225
<12	c12	hP2	hP2	c12	cl2	hP2	hP2	cF4	cF4	cF4	112	hP2	cF4	hR6	CP1		cF4

					,	VA: PA	SP W	VS.	VASP vs. WIEN2k PAW vs. APW+lo													
н 0.2																не 0.0						
u 0.2	ве 0.2	Δ(VASP) = 1.8 meV/atom B C N O F 0.2 0.1 7.9 3.7 1.6													Ne 0.1							
Na 0.0	м ₈ 0.7											0.3	si 2.0	р 3.8	s 3.3	ci 4.0	Ar 0.1					
к 0.1	са 0.2	sc 0.4	ті 0.9	v 1.3	cr 3.1	Mn 1.4	Fe 3.4	co 3.1	Nİ	Cu	Zn VAS	Ga P	Ge WIEI 14.4	AS N2k 7	se 1.5	вг 1.5	кт 0.1					
Rb 0.1	5r 0.1	v 0.5	2r 2.7	Nb 7.2	мо 5.4	тс 8.3	Ru 2.3	Rh 5.4	B ₀ B ₁		298 4	.50 .55	301.4 4.5	, 56	те 0.2	0.9	xe 0.1					
0.4	ва 0.8	4.4	нf 1.0	та 1.3	w 3.9	Re 4.1	05 4.3	1.3	3.1	6.0	0.9	0.6	0.5	0.6	Ро 0.4	At	Rn 0.7					
		U.		o Package imulation									APV		0							

					VASP vs. WIEN2k													
н 0.2															не 0.0			
и 0.2	Be Δ(VASP) = 1.8 meV/atom B C N O F 0.2 0.1 7.9 3.7 1.6													Ne 0.1				
Na 0.0	м ₈ 0.7											۸۱ 0.3	si 2.0	р 3.8	s 3.3	сі 4.0	Ar 0.1	
к 0.1	са 0.2	sc 0.4	0.9	v 1.3	Cr 3.1	Mn 1.4	Fe 3.4	3.1	Ni Va	Cu	VAS 52	67 67	Ge WIEI 52.2	AS N2k 21	se 1.5	Br 1.5	0.1	
0.1	0.1	0.5	2.7	7.2	5.4	8.3	2.3	5.4	B ₀ B ₁		7	.8 .35	0.7 7.8	7 34	0.2	0.9	0.1	
0.4	ва 0.8	4.4	1.0	1.3	3.9	4.1	4.3	1.3	3.1	6.0	0.9	0.6	0.5	0.6	0.4	At	0.7	
		U.		e Package imulation									APV		0			

					6		W	vs.	W	IEN	V2k						
н 0.2		_				PA	vv	vs.	Ar	vv -	-10						не 0.0
ці 0.2	ве 2.7			∆(•	GPAV	V) = 3	.3 me	eV/at	om			в 0.3	с 0.7	N 1.8	0 5.2	F 0.9	Ne 0.2
Na 0.1	мg 0.3											Al 0.2	si 0.5	Р 1.2	s 2.2	0.9	Ar 0.1
к 0.0	1.0	sc 0.1	3.7	9.3	2.3	Mn 3.7	Fe 1.0	1.0	Ni 2.8	2.6	2n 0.3	Ga 1.7	Ge 1.5	As 1.0	5e 2.3	Br 2.8	кг 0.0
0.1	1.5	1	1.2	3.1	3.8	10	20.9	14.5	3.4	4.5	0.1	0.3	0.2	SD	7.7	3.2	Xe De
0.3	ва 0.7	LU	н	10.4	19.7	102	19.1	12.3	7.0	6.9	нg		0.7	0.7	PO	AL	ки
		Ģ	A	N!									W	E			
		P	AW										APV	V+I	0		

					6	P A	W	vs.	W:	IEI	N2k						
н 0.2						PA	vv	VS.	AP	W.	+10						не 0.0
ці 0.2	Ве 2.7			∆(GPAV	/) = 3	.3 me	eV/ato	om			в 0.3	с 0.7	N 1.8	0 5.2	F 0.9	Nc 0.2
Na 0.1	мg 0.3											Al 0.2	si 0.5	р 1.2	s 2.2	0.9	Ar 0.1
к 0.0	са 1.0	sc 0.1	ті 3.7	9.3	Cr 2.3	Мn 3.7	Fe 1.0	со 1.0	Ni	Cu	GPA	W 10	WIEI	As N2k	se 2.3	Br 2.8	кг 0.0
RD 0.1	sr 1.5	Y	zı 1.2	Nb 3.1	мо 3.8	тс	Ru 20.9	Rh 14.5	V ₀ B ₀ B ₁		310 4	.10).9 .90	13.8 315.4 4.9	96	те 7.7	1 3.2	Xe
сs 0.3	ва 0.7	Lu	Hf	та 10.4	w 19.7	Re	0s 19.1	۱ 12.3	7.0	6.9			0.7	0.7	Po	At	Rn
	3	GI P	AW	V!									APV		0		

Code	Versio	nBasis	Potentials	∆-value	Authors
WIEN2K P	13,1	LAPW/APW+lo	full	0 meV/ator	nS. Cottenier
CASTEP	8.0	plane waves	OTFG CASTEP 8.0	0.5 meV/atom	CASTEP [7]
ABINIT®	7.7.3	plane waves	PAW JTH v0.2	0.6 meV/atom	F. Jollet and M Torrent
VASP®	5.2.12	plane waves	PAW 2012	0.7 meV/atom	K. Lejaeghere
RSPt@	1672	LMTO	full	0.8 meV/atom	RSPt [6]
VASP	5.2.12	plane waves	PAW 2012 GW-ready	0.8 meV/atom	K. Lejaeghere
FLEUR	0.26	LAPW	full	0.8 meV/atom	FLEUR [9]
FPLOR	14.00	enhanced local orbitals + fixed compact support radius	full	0.9 meV/atom	FPLO [8]
FPLOS	14.00	enhanced local orbitals	full	1.0 me∀/atom	FPLO [8]
	7.5.3	plane waves	PAW JTH#	1.2 meV/atom	F. Jollet et al. [

Appendix: DFT-accuracy vs. experiment / accuracy of various basis sets

Conclusions:

- •These error bars give a quantitative estimate of the predicitive power of DFT (PBE)
- PAW as well as LAPW (APW+lo) lead to very similar predictions

http://dx.doi.org/10.1080/10408436.2013.772503