

Computational Materials Physics

the electron density

Stefaan.Cottenier@ugent.be Technologiepark 903, Zwijnaarde http://molmod.ugent.be http://www.ugent.be/ea/dmse/en my talks on Youtube: http://goo.gl/P2b1Hs

three levels of approximations exact hamiltonian Born-Oppenheimer level 2: Hartree-Fock DFT level 3:

electron density for 1 electron

The electron density operator for one electron :

$$\hat{\rho}(\vec{r}) = \delta(\vec{r}' - \vec{r})$$

The electron density for one electron :

$$\begin{split} \rho(\vec{r}) &= \left\langle \Psi \middle| \hat{\rho}(\vec{r}) \middle| \Psi \right\rangle \\ &= \int \Psi^*(\vec{r}) \Psi(\vec{r}') \delta(\vec{r}' - \vec{r}) d\vec{r}' \\ &= \Psi^*(\vec{r}) \Psi(\vec{r}) \\ &= \left| \Psi(\vec{r}) \right|^2 \end{split}$$

Interpretation: probability to find the electron at $\vec{\mathbf{r}}$

electron density for N electrons

The electron density operator for N electrons :

$$\hat{\rho}(\vec{r}) = \sum_{i=1}^{N} \delta(\vec{r}' - \vec{r})$$

The electron density for N electrons :

$$\rho(\vec{r}) = \langle \Psi | \hat{\rho}(\vec{r}) | \Psi \rangle$$

$$= \sum_{i=1}^{N} \int \Psi^* \left(\vec{r}_i, \ldots, \vec{r}_i \equiv \vec{r}, \ldots, \vec{r}_N \right) \Psi \left(\vec{r}_i, \ldots, \vec{r}_i \equiv \vec{r}, \ldots, \vec{r}_N \right) d\vec{r}_i \ldots \cancel{M}_N^* \ldots d\vec{r}_N$$

$$= \sum_{i=1}^{N} \left| \phi(\vec{r}_{i}) \right|^{2} \quad (*)$$

Interpretation: probability to find any electron at $\vec{\rm r}$, regardless where the $\,$ N-1 other are.

(*) : only if Ψ can be written by one-electron wave functions $\phi.$

the electron density is a function

$$\rho:?\mapsto ?:?\mapsto \rho(?)$$

Exercise

two spin-less particles

the electron density is a function

the electi	ron density is a function
	spoiler
	spoiler prevention