

To proof: if $\Psi \neq \Psi'$, then $\rho \neq \rho'$ Do this by assuming that $\Psi \neq \Psi'$ and $\rho = \rho'$, which will lead to a contradiction.

Ψ is the ground state of a hamiltonian H, ground state energy is E _{gs} Ψ' is the ground state of a hamiltonian H', ground state energy is E' _{gs}	
Same number of electrons (otherwise trivial), hence: H = T + W +V and H' = T + W + V' → H = H' - V' + V	
Due to variational principle: $E_{gs} = \left\langle \Psi \middle H \middle \Psi \right\rangle < \left\langle \Psi \middle H \middle \Psi \middle \right\rangle$ $= \left\langle \Psi \middle H \middle + V - V \middle \Psi \middle \right\rangle$	

D		
LILIA TO VARIATIONAL NRINCINIA	nrincinle	Due to variational

$$\begin{split} E_{gs} &= \left\langle \Psi \middle| H \middle| \Psi \right\rangle < \left\langle \Psi' \middle| H \middle| \Psi' \right\rangle \\ &= \left\langle \Psi' \middle| H' + V - V' \middle| \Psi' \right\rangle \\ &= E'_{gs} + \int \rho' (\overline{r}) \left[v(\overline{r}) - v'(\overline{r}) \right] d\overline{r} \end{split}$$

Due to variational principle:

$$\begin{split} E_{gs} &= \left\langle \Psi \middle| H \middle| \Psi \right\rangle < \left\langle \Psi' \middle| H \middle| \Psi' \right\rangle \\ &= \left\langle \Psi' \middle| H' + V - V' \middle| \Psi' \right\rangle \\ &= E'_{gs} + \int \rho' (\overline{r}) \Big[v(\overline{r}) - v'(\overline{r}) \Big] d\overline{r} \end{split}$$

$$E_{gs} < E'_{gs} + \int \rho'(\overline{r}) [v(\overline{r}) - v'(\overline{r})] d\overline{r}$$

Repeat argument, starting with Ψ^{\prime} :

$$E'_{gs} < E_{gs} + \int \rho(\overline{r}) \Big[v'(\overline{r}) - v(\overline{r}) \Big] d\overline{r}$$

$$E_{gs} < E'_{gs} + \int \rho'(\overline{r}) [v(\overline{r}) - v'(\overline{r})] d\overline{r}$$

$$E'_{gs} < E_{gs} + \int \rho(\overline{r}) \Big[v'(\overline{r}) - v(\overline{r}) \Big] d\overline{r}$$

Add, assuming that $\rho = \rho'$

- \rightarrow $\underline{E}_{gs} + \underline{E}'_{gs} < \underline{E}_{gs} + \underline{E}'_{gs}$
- **→** contradiction

for non-degenerate ground states

To proof: if $\Psi \neq \Psi'$, then $\rho \neq \rho'$ Do this by assuming that $\Psi \neq \Psi'$ and ρ = ρ' , which will lead to a contradiction.

1st Hohenberg-Kohn theorem

 $C: \hat{V}_{ext} \mapsto \Psi$ surjective by construction $D: \Psi \mapsto \rho$ surjective by construction

Are C and D also injective ?

1st Hohenberg-Kohn theorem	
$\dot{\hat{V}}_{\text{st}} \qquad \qquad \dot{\hat{V}}_{\text{ext}} \qquad \dot{\hat{V}}_{\text{ext}} \qquad \qquad \dot{\hat{V}}_{\text$	

1st	Hο	hen	berg-	Kohn	the	orem
-			UCIE		LIIC	

" There is a one-to-one correspondence between the ground state density of a many-electron system and the external potential."

To proof: if $\Psi\neq\Psi'$, then $\rho\neq\rho'$ for non-degener. Do this by assuming that $\Psi\neq\Psi'$ and $\rho=\rho'$, which will lead to a contradiction.

 Ψ is the ground state of a hamiltonian H, ground state energy is E $_{\rm gs}$ Ψ'' is the ground state of a hamiltonian H', ground state energy is E' $_{\rm gs}$

Same number of electrons (otherwise trivial), hence: $H = T + W + V \text{ and } H' = T + W + V' \quad \red \quad H = H' - V' + V$

Due to variational principle:

 $E_{gs} = \left\langle \Psi \left| H \right| \Psi \right\rangle < \left\langle \Psi' \left| H \right| \Psi' \right\rangle = \left\langle \Psi' \left| H \right| + V - V' \right| \Psi' \right\rangle = E'_{gs} + \int \rho' (\overline{r}) \Big[v \left(\overline{r} \right) - v' \left(\overline{r} \right) \Big] d\overline{r}$

Repeat argument, starting with Ψ^{\prime} :

 $E'_{\text{gs}} < E_{\text{gs}} + \int \rho \left(\overline{r}\right) \! \left[v'\!\left(\overline{r}\right) \! - v\left(\overline{r}\right)\right] \! d\overline{r}$

Add, assuming that ρ = ρ' \implies E_{gs} + E'_{gs} < E_{gs} + E'_{gs} \implies contradiction

P. Hohenberg and W. Kohn, Phys. Rev. 136B (1964) 864