

proof: 1st Hohenberg-Kohn theorem

To proof: if $\Psi\neq\Psi'$, then $\rho\neq\rho'$ Do this by assuming that $\Psi\neq\Psi'$ and ρ = ρ' , which will lead to a contradiction.

 Ψ is the ground state of a hamiltonian H, ground state energy is E $_{\rm gs}$ Ψ' is the ground state of a hamiltonian H', ground state energy is E $'_{\rm gs}$

Same number of electrons (otherwise trivial), hence: H = T + W + V and H' = T + W + V' \rightarrow H = H' - V' + V

Due to variational principle:

$$E_{gs} = \left\langle \Psi' \middle| H \middle| \Psi' \right\rangle < \left\langle \Psi' \middle| H \middle| \Psi' \right\rangle = \left\langle \Psi' \middle| H' + V - V' \middle| \Psi' \right\rangle = E'_{gs} + \int \rho'(\overline{r}) \Big[v(\overline{r}) - v'(\overline{r}) \Big] d\overline{r}$$

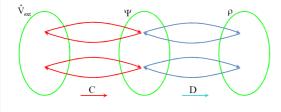
Repeat argument, starting with Ψ' :

$$E'_{gs} < E_{gs} + \int \rho(\overline{r}) [v'(\overline{r}) - v(\overline{r})] d\overline{r}$$

Add, assuming that ρ = ρ' \Rightarrow $E_{gs} + E'_{gs} < E_{gs} + E'_{gs}$ \Rightarrow contradiction

P. Hohenberg and W. Kohn, Phys. Rev. 136B (1964) 864

1st Hohenberg-Kohn theorem



 $C: \hat{V}_{\text{ext}} \mapsto \Psi$

bijective

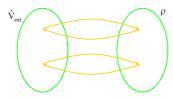
⇒ one-to-one relations

 $D: \Psi \mapsto \rho$

bijective

1st Hohenberg-Kohn theorem

" There is a one-to-one correspondence between the ground state density of a many-electron system and the external potential."



Consequence: any observable ground state property of the many-electron system can be written as a unique functional of the density:

property =
$$\langle \Psi | \hat{O} | \Psi \rangle = O[\rho]$$