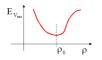
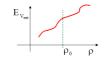


## **Computational Materials Physics**



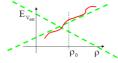

Department of Materials Science and Engineerin


## 2<sup>nd</sup> Hohenberg-Kohn theorem

Stefaan.Cottenier@ugent.be Technologiepark 903, Zwijnaarde http://molmod.ugent.be http://www.ugent.be/ea/dmse/en my talks on Youtube: http://goo.gl/P2b1Hs

## 2<sup>nd</sup> Hohenberg-Kohn theorem

"The unique functional that returns the ground state total energy when applied to the ground state density, returns a higher energy for any other density."






## 2<sup>nd</sup> Hohenberg-Kohn theorem

"The unique functional that returns the ground state total energy when applied to the ground state density, returns a higher energy for any other density."





Note 1: this functional can be written as

$$E_{\,V_{\text{ext}}}\left[\rho\,\right]\!=F_{\text{HK}}\left[\rho\,\right]\!+\int\!\rho\left(\vec{r}\,\right)\!V_{\text{ext}}\left(\vec{r}\,\right)\!d\vec{r}$$

with  $F_{HK}$  the (unknown) Hohenberg-Kohn functional that returns the kinetic and electron-electron part of the total energy.

 $\underline{\text{Note 2}}$  : this suggests a procedure to find the ground state density by minimizing the total energy functional.