

Computational Materials Physics

Department of Materials Science and Engineering

geometry optimization 2 : unit cell shape

Stefaan.Cottenier@ugent.be Technologiepark 903, Zwijnaarde http://molmod.ugent.be http://www.ugent.be/ea/dmse/en my talks on Youtube: http://goo.gl/P2b1Hs

only for a few high-symmetry crystals, the volume fully determines the unit cell.

In most cases, many different unit cell shapes are possible for a given volume :

а	ℓ	0.9ℓ
b	ℓ	0.9ℓ
С	2ℓ	2.47ℓ
V	$2\ell^3$	2ℓ ³

only for a few high-symmetry crystals, the volume fully determines the unit cell.

In most cases, many different unit cell shapes are possible for a given volume.

6 parameters (a, b, c, α , β , γ) with one constraint (volume) =

5 degrees of freedom.

For every volume: minimize energy according to these 5 degrees of freedom

(alternative: stress tensor formalism - see later)

Can be cumbersome for low-symmetry crystals	
Doable and relevant example: hcp-Mg	
• start from an experimental cif file • vary the volume in 5 steps (\pm 6%, \pm 3%, 0%)	
• for every volume, vary the c/a ratio in 5 steps $(\pm 4\%, \pm 2\%, 0\%)$ • determine the best c/a (and corresponding energy) for every volume	
 make a Birch-Murnaghan fit through the resulting 5 E(V)-points. 	