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what are elastic constants ?

http://molmod.ugent.be
Stefaan.Cottenier@ugent.be http://www.ugent.be/ea/dmse/en
Technologiepark 903, Zwijnaarde my talks on Youtube: http://goo.gl/P2b1Hs

Hooke’s law

Hooke’s law for the elongation of a rod
subject to a given axial stress:
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Hooke’s law for the elongation of a spring
subject to a given force:

F
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//" = ka (axial) stress k'
J N _ Y
force displacement -
applied to (elongation of V S \/g
the spring the spring) _ C € — > strain
Dutch: “spanning” Dutch: “vervorming”

Hooke’s law

Hooke’s law for the elongation of a rod

Hooke’s law for the elongation of a spring
subject to a given axial stress:

subject to a given force:
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Hooke’s law

Elastic energy of the spring : Elastic energy density of the rod :
i
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Hooke’s law
for three-dimensional anisotropic materials

Ozz Ozy Ogxz Stress tensor

ti th terial
P — Oy Oyy Oyz (your ac |9n on the material)
(symmetric, 3x3)

Ozz Oyz Oz

Gj; - if we cut the material along
a plane perpendicular to the
i-direction, then the
j-component of the force per
unit area exerted by one half
of the material on the other
half is given by o;. These
forces are the internal
forces that hold the material

From: http://en.wikipedia.org/wiki/Stress i together.

Hooke’s law
for three-dimensional anisotropic materials

* Stress tensor is position dependent: in general different values
at different points inside a macroscopic material

* Stress tensor is time dependent: in general different values
at different moments in time during a process

Force per unit area in a plane perpendicular to
the unit vector n:(nx,ny,nz):

i
Py Oz Ooy oz Ny
i
P y = Ozy Oyy Oyz I
0
Py Ozz Oyz Ouz n,




Hooke’s law
for three-dimensional anisotropic materials

€xx  Cxy C€az Strain tensor
€ — Ernp. oy Gz (response of the material)
= LEd vz (symmetric, 3x3)
€xz €yz €2z

Notes:

« Displacement vector for any point
of a material: from where to where

did this point move under the effect of &= how does the
applied stress? j-component of the

« This version is valid for displacement vector
small deformations only . .
(infinitesimal strain theory) change if you inspect

the material along
the i-direction?

More info: http://en.wikipedia. i tensor
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Use http://www.cryst.ehu.es/cryst/strain.html to determine the
strain tensor corresponding to a given deformation.

Example: fcc Al

« take the experimental lattice parameters as the undeformed cell — —
« apply a volume-conserving elongation along the c-axis _ \

h - Strain

Strain Teny

_

Unit cell 1
! 404958 404958 4.04958 90.90. 90. €« ———
Given two initial unit cells (cell 1 is considered as undeformed
and cell 2, the deformed one) the program STRAIN calculates | i coqi 2 [2,] (b,] [e;] [a,] [B,] [v;)
the linear and finite strain tensor for the given cells and their

392295 3.92295 4.31524 90. 90. 90|
corresponding eigenvalues

=

Use http://www.cryst.ehu.es/cryst/strain.html to determine the
strain tensor corresponding to a given deformation.

Example: fCC Al Result: Linear Lagrangian Strain Tensor (small deformation)

Eigenvalues

-0.03127 -0.03127 0.06560
€rx €ry €xz

Cry  Cyy Cyz
€xz €yz €zz




Hooke’s law
for three-dimensional anisotropic materials

P = Ce

\ 4

op Cn Cip Ci3 Ciy Ci5 Cis Esz
Tyy Cip Oy O3 Oy Cys Oy €yy
Oz _ Ciz Oz Cz3 O3y Cz5 Csg €xz
Oys B Ciy Coy C3p Cyy Cys Cye 2¢€y.
Oz Cis5 Oy O35 Cy5 Cs5 Cse 2¢€z;
Ty Cis Cyp Css Cis Css Ces 24y
stress tensor (36 — 21) elastic constants strain tensor
(your action) (material’s property) (response of material)
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Hooke’s law
for three-dimensional anisotropic materials

E 1,

Ciy Cra Ciz Cyy Cys
Cia O Coz Coy Cos
Ciz Coy C33 C3y Cys
Ciyy Coy C3y Cy Cys
Cis Cxs C35 Cis Css
Cig Ca Czs Cas Csg

[ s ey &= 265 260 26y ]

Hooke’s law
for materials with cubic symmetry

Depending on the crystal symmetry, these general expressions
take on simpler forms. Example for cubic symmetry:

Hooke’s law :
Ozz Cyy Cpp Crp 0 0 0
Tyy Cip Cip Ci2 0 0 0
Ozz _ Cip Cip Cip 0 0 0
o | T 0O 0 0 Cu 0 0
T 0O 0 0 0 Cu 0
i 0 0 0 0 0 Cy

3 independent elastic constants only

€xx

€yy

2¢ey,

2€5,

265y




Hooke’s law
for materials with cubic symmetry

Depending on the crystal symmetry, these general expressions
take on simpler forms. Example for cubic symmetry:

Elastic energy:

Cu Cip Ciz2 0 0 0
Ciz On Gz 0 0 0O
Ciz Cia Cu 0 0 0O

Eetast 1
v B [em e e 200 20 26 ] | 0% 0% g Cu 0 0
0 0 0 0 Cu 0
00 0 0 0 Cu
Eolast  _ 1(, 2 2 2 c i 20, (2 2 2
T = O (Gt ey ) + Oty + emens +eyezz) + 20ua (g + €+ €5
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In a course on continuum mechanics:

* You get the C-tensor for a material, and determine the
strain resulting from a given stress

* You get the C-tensor for a material, and determine the
stress that explains a given strain

* You get an unknown material, and by applying a known stress
and measuring the resulting strain, you determine the C-tensor.

In this course:

* You learn how to predict the C-tensor for a given
crystalline material from quantum physics, without any
experiment.




