

$\frac{\text{total energy}}{\frac{E_{\text{clast}}}{V}} = \frac{1}{2} \left[\epsilon_{xx} \ \epsilon_{yy} \ \epsilon_{zz} \ 2\epsilon_{yz} \ 2\epsilon_{xz} \ 2\epsilon_{xy} \right]$	$\begin{bmatrix} C_{11} \\ C_{12} \\ C_{13} \\ C_{14} \\ C_{15} \\ C_{16} \end{bmatrix}$	$C_{12} \\ C_{22} \\ C_{23} \\ C_{24} \\ C_{25} \\ C_{26}$	$C_{13} \\ C_{23} \\ C_{33} \\ C_{34} \\ C_{35} \\ C_{36}$	$C_{14} \\ C_{24} \\ C_{34} \\ C_{44} \\ C_{45} \\ C_{46}$	$C_{15} \\ C_{25} \\ C_{35} \\ C_{45} \\ C_{55} \\ C_{56}$	$\begin{array}{c} C_{16} \\ C_{26} \\ C_{36} \\ C_{46} \\ C_{56} \\ C_{66} \end{array}$	$ \begin{bmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \epsilon_{zz} \\ 2\epsilon_{yz} \\ 2\epsilon_{xz} \\ 2\epsilon_{xz} \\ 2\epsilon_{xy} \end{bmatrix} $
 full geometry optimization (E₀ = ground s deform cell, construct strain tensor compute E for deformed cell (E_{elast} = 	tate tot	al ener					

total energy

- full geometry optimization (E₀ = ground state total energy)
- deform cell, construct strain tensor
- compute E for deformed cell (E_{elast} = E E₀)
- repeat for multiple amounts
- of the same deformation

example cubic crystal: C ₁₁ , C ₄₄ , C ₁₂ only								
total energy	$\begin{bmatrix} C_{11} \\ C \end{bmatrix}$	C_{12}	C_{12}	0	0	0	ϵ_{xx}	
$E_{\text{elast}} = \frac{1}{2} \begin{bmatrix} \epsilon & \epsilon & \epsilon & 2\epsilon & 2\epsilon \end{bmatrix}$	C ₁₂ C ₁₂	$C_{11} C_{12}$	$C_{12} C_{11}$	0	0	0	ϵ_{yy} ϵ_{zz}	
$V = 2 \begin{bmatrix} e_{xx} & e_{yy} & e_{zz} & 2e_{yz} & 2e_{xz} & 2e_{xy} \end{bmatrix}$	0	0	0	C_{44}	0	0	$2\epsilon_{yz}$ $2\epsilon_{zz}$	
	0	0	0	0	0	C44	$2\epsilon_{xy}$	
$\begin{array}{l} \begin{array}{l} \begin{array}{c} C_{\text{tabult}} C_{\text{tabul}} $								

$\frac{\text{total energy}}{V} = \frac{1}{2} \begin{bmatrix} \epsilon_{xx} & \epsilon_{yy} & \epsilon_{zz} & 2\epsilon_{yz} \end{bmatrix} 2\epsilon_{xz}$	$2\epsilon_{xy}$]	$\begin{bmatrix} C_{11} \\ C_{12} \\ C_{13} \\ C_{14} \\ C_{15} \\ C_{16} \end{bmatrix}$	$\begin{array}{c} C_{12} \\ C_{22} \\ C_{23} \\ C_{24} \\ C_{25} \\ C_{26} \end{array}$	$C_{13} \\ C_{23} \\ C_{33} \\ C_{34} \\ C_{35} \\ C_{36}$	$C_{14} \\ C_{24} \\ C_{34} \\ C_{44} \\ C_{45} \\ C_{46}$	$C_{15} \\ C_{25} \\ C_{35} \\ C_{45} \\ C_{55} \\ C_{56} $	$\begin{array}{c} C_{16} \\ C_{26} \\ C_{36} \\ C_{46} \\ C_{56} \\ C_{66} \end{array}$	$\begin{bmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ \epsilon_{zz} \\ 2\epsilon_{yz} \\ 2\epsilon_{xz} \\ 2\epsilon_{xy} \end{bmatrix}$
 advantage only total energy needed disadvantage many DFT calculations 								

