MA chate	Computational Materials Physics	
how to predict elastic constants ?		
Statancoremememenem		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Stefaan.Cottenier@ugent.be \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
total energy

\qquad
\qquad
full geometry optimization ($\mathrm{E}_{0}=$ ground state total energy)
\qquad
deform cell, construct strain tensor
compute E for deformed cell $\left(\mathrm{E}_{\text {elast }}=\mathrm{E}-\mathrm{E}_{0}\right)$

full geometry optimization ($\mathrm{E}_{0}=$ ground state total energy)

- deform cell, construct strain tensor
compute E for deformed cell $\left(\mathrm{E}_{\text {elast }}=\mathrm{E}-\mathrm{E}_{0}\right)$

\qquad
\qquad
\qquad
- deform cell, construct strain tensor
- compute E for deformed cell ($\mathrm{E}_{\text {elast }}=\mathrm{E}-\mathrm{E}_{0}$)
repeat for multiple amounts
of the same deformation
total energy

full geometry optimization ($\mathrm{E}_{0}=$ ground state total energy)
deform cell, construct strain tensor
- compute E for deformed cell $\left(\mathrm{E}_{\text {elast }}=\mathrm{E}-\mathrm{E}_{0}\right)$
repeat for multiple amounts
of the same deformation \qquad
- fit suitable expression with C_{ij}
- repeat for other deformations,
untill sufficient expressions to know all C_{ij}

example cubic crystal: $\mathrm{C}_{11}, \mathrm{C}_{44}, \mathrm{C}_{12}$ only			
total energy $\frac{E_{\text {elast }}}{V}=\frac{1}{2}\left[\begin{array}{llllll} \epsilon_{x x} & \epsilon_{y y} & \epsilon_{z z} & 2 \epsilon_{y z} & 2 \epsilon_{x z} & 2 \epsilon_{x y} \end{array}\right.$	$\left[\begin{array}{ccc} C_{11} & C_{12} & C_{1} \\ C_{12} & C_{11} & C_{1} \\ C_{12} & C_{12} & C_{1} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right.$	$\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ C_{44} & 0 & 0 \\ 0 & C_{44} & 0 \\ 0 & 0 & C_{44} \end{array}$	$\left[\begin{array}{l}\epsilon_{x x} \\ \epsilon_{y y} \\ \epsilon_{z z} \\ 2 \varepsilon_{y z} \\ 2 \epsilon_{\text {cz }} \\ 2 \epsilon_{x y}\end{array}\right.$
- full geometry optimization $\mathrm{E}_{0}=$ ground - deform cell, construct strain tensor - compute E for deformed cell ($\mathrm{E}_{\text {elast }}$ - repeat for multiple amounts of the same deformation - fit suitable expression with C_{ij} - repeat for other deformations, untill sufficient expressions to know	ate total energy) $\left.E-E_{0}\right)$		

\qquad
\qquad
\qquad
full geometry optimization ($E_{0}=$ ground state total energy)
deform cell, construct strain tensor
compute E for deformed cell $\left(\mathrm{E}_{\text {elast }}=\mathrm{E}-\mathrm{E}_{0}\right)$
of the same deformation
\qquad
of the same deformation \qquad
fit suitable expression with C_{ij}
untill sufficient expressions to know all C_{ij}

total energy example cubic crystal $\mathrm{C}_{11}, \mathrm{c}_{44}, \mathrm{c}_{12}$ only	
$\frac{E_{\text {canst }}}{V}=\frac{1}{2} C_{11}\left(\epsilon_{x x}^{2}+\epsilon_{y y}^{2}+\epsilon_{z z}^{2}\right)+C_{12}\left(\epsilon_{x x x} \epsilon_{y y}+\epsilon_{x x} \epsilon_{z z}+\epsilon_{y y y} \epsilon_{z z}\right)+2 C_{44}\left(\epsilon_{x y}^{2}+\epsilon_{x z}^{2}+\epsilon_{y y z}^{2}\right)$	
deformation with only $\varepsilon_{x x} \neq 0$: $\frac{E_{\text {elast }}}{V}=\frac{1}{2} C_{11} \epsilon_{x x}^{2}$	
$\frac{E_{\text {elast }}}{V}=\left(C_{11}+C_{12}\right) \epsilon_{x x}^{2}$	
- deformation with only $\varepsilon_{x y} \neq 0$:	

\qquad
\qquad
\qquad
\qquad
\qquad
$\frac{E_{\text {clast }}}{V}=\left(C_{11}+C_{12}\right) \epsilon_{x x}^{2 x}$
deformation with only $\varepsilon_{x y} \neq 0$: \qquad
$\frac{E_{\text {elast }}}{V}=2 C_{44} \epsilon_{x y}^{2}$

total energy $\frac{E_{\text {elast }}}{V}=\frac{1}{2}\left[\begin{array}{llllll} \epsilon_{x x} & \epsilon_{y y} & \epsilon_{z z} & 2 \epsilon_{y z} & 2 \epsilon_{x z} & 2 \epsilon_{x y} \end{array}\right]$ - advantage only total energy needed disadvantage many DFT calculations	$\left[\begin{array}{lllll} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\ C_{16} \\ C_{12} & C_{22} & C_{23} & C_{24} & C_{25} \\ C_{26} \\ C_{13} & C_{23} & C_{33} & C_{34} & C_{35} \\ C_{36} \\ C_{14} & C_{24} & C_{44} & C_{45} & C_{46} \\ C_{15} & C_{25} & C_{35} & C_{45} & C_{55} \\ C_{26} & C_{36} & C_{46} & C_{56} & C_{66} \end{array}\right]\left[\begin{array}{c} \epsilon_{x x} \\ \epsilon_{y y} \\ \epsilon_{y y} \\ \epsilon_{z z} \\ 2 \epsilon_{y z} \\ 2 \epsilon_{x z} \\ 2 \epsilon_{x y} \end{array}\right.$

\qquad
\qquad
\qquad
\qquad
only total energy needed

- disadvantage \qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
- full geometry optimization ($\mathrm{E}_{0}=$ ground state total energy) \qquad
- deform cell, construct strain tensor
- compute stress tensor for deformed cell \qquad
- repeat for 6 types of deformation
- all C_{ij} follow from matrix equation \qquad
$\Sigma \mathrm{E}^{-1}=\mathrm{C}$
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

