

Computational Materials Physics

what are elastic constants used for ?

Stefaan.Cottenier@ugent.be Technologiepark 903, Zwijnaarde http://molmod.ugent.be http://www.ugent.be/ea/dmse/en my talks on Youtube: http://goo.gl/P2b1Hs

Several so-called "elastic moduli" can be derived from the elastic constant.

 $B = \frac{c_{11} + 2 c_{12}}{3}$

 $G = \frac{c_{11} - c_{12} + 3 c_{44}}{-}$

For cubic crystals:

Bulk modulus B:

Shear modulus G:

Young's modulus E:

micro-hardness Hv:

 $E = \frac{9BG}{3B + G}$ H_v = (1 - 2 v) E / [6 (1 + v)] with v = (3 B - 2 G) / [2 (3 B + G)]

Typical agreement with experiment (here for fcc Cu) :

	Our calculations	Experiment
Lattice constant [Å]	3.64	3.61 [1]
C ₁₁ [GPa]	176.7	176.20 [2]
C ₁₂ [GPa]	122.4	124.94 [2]
C ₄₄ [GPa]	78.0	81.77 [2]
Speed of sound [m/s]	4403	4439.5 [2]
Melting temperature [K]	1577	1356 [3]
Bulk modulus [GPa]	137.1	142.0 [2]
Shear modulus [GPa]	57.66	59.3 [2]
Young's modulus [GPa]	151.7	156.2 [2]
Poisson's Ratio	31.9%	31.7% [2]

(Taken from an exam by Yves Beghein, Jan Jaeken and Steven Vandenbrande)

Born stability criteria: Eigenvalues of the C-tensor must be positive

Example for the cubic case:	c ₁₁ > 0
	c ₄₄ > 0
	c ₁₁ -c ₁₂ > 0
	$c_{11} + 2c_{12} > 0$

Even if E_{coh} is positive (energetically stable), the material might not be mechanically stable

Up to now, we discussed elastic constants at p=0. Just as the bulk modulus, they can be generalized to any pressure.