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This document guides you through the procedure to compute the elastic
constants of a given crystal by DFT, via the stress tensor procedure.

Whereas this document is written mainly in a code-independent way, the pro-
cedure is illustrated with DFT calculations for fcc-Al with Quantum Espresso,
using the following settings: PBE exchange-correlation functional with the
Al.pbe-n-kjpaw psl.0.1.UPF pseudopotential for Al, ecutwfc=60 Ry, ecutrho=300 Ry,
20×20×20 k-mesh, conventional unit cell (4 atoms) with lattice parameter
4.037529Å (fully geometry-optimized for this XC-functional and pseudopoten-
tial).

1 step 1: standard root tensor of the crystal

At the start, we have the unit cell of a crystal. It is fully geometry-optimized,
using well-converged DFT-calculations.

Choose an axis system, and put the unit cell in that axis system. Take one
of the corners in the origin of the axis system. Often, yet not necessarily so,
you take the axes aligned with the edges of the unit cell.

For all three lattice vectors that together define the unit cell: write down
their components in this axis system. Apart from the general notation, an
example for the conventional unit cell of fcc-aluminum is immediately added
(a=4.037529 Å):

~a = (ax, ay, az) = (a, 0, 0) (1)

~b = (bx, by, bz) = (0, a, 0) (2)

~c = (cx, cy, cz) = (0, 0, a) (3)

Herewith, we form the standard root tensor of the initial cell:

R1 =

 ax bx cx
ay by cy
az bz cz

 =

 a 0 0
0 a 0
0 0 a

 (4)

1



(For Quantum Espresso users: note that the standard root tensor is the trans-
posed version of the CELL PARAMETERS matrix in the input file of Quantum
Espresso.)

2 step 2: deform the crystal

Now apply a deformation to this unit cell. A deformation is described by a
deformation gradient F, which is a 3x3 matrix. In our example, we’ll work with
one specific choice of F, but in principle the matrix elements of F can have any
value:

F =

 Fxx Fyx Fzx
Fxy Fyy Fzy
Fxz Fyz Fzz

 =

 1 δ 0
0 1 0
0 0 1

 (5)

The way how F deforms the unit cell is found by multiplying the coordinate of
any point in the undeformed cell with F. The result is the coordinate of that
point after the deformation: x2

y2
z2

 =

 Fxx Fyx Fzx
Fxy Fyy Fzy
Fxz Fyz Fzz

  x1
y1
z1

 (6)

(coordinates before the deformation are labeled by ’1’, after the deformation
by ’2’) In particular, you can apply F to the components of a lattice vector (to
be considered as the coordinates of the end point of that vector). It returns a
lattice vector of the deformed cell: a2x

a2y
a2z

 =

 Fxx Fyx Fzx
Fxy Fyy Fzy
Fxz Fyz Fzz

  a1x
a1y
a1z

 (7)

This can be written for all three lattice vectors simultaneously: multiply the
deformation gradient with the standard root tensor of the undeformed cell, to
get the standard root tensor of the deformed cell: a2x b2x c2x

a2y b2y c2y
a2z b2z c2z

 =

 Fxx Fyx Fzx
Fxy Fyy Fzy
Fxz Fyz Fzz

  a1x b1x c1x
a1y b1y c1y
a1z b1z c1z

 (8)

For the example deformation of fcc aluminum, this becomes: a aδ 0
0 a 0
0 0 a

 =

 1 δ 0
0 1 0
0 0 1

  a 0 0
0 a 0
0 0 a

 (9)
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3 step 3: construct DFT-input for the deformed
crystal

Create a cif file for the deformed cell (unless your DFT code allows a handy input
for deformed cells, for instance because the standard root tensor or the lattice
vector matrix is part of the input file – in that case you can enter the deformed
cell there, without the need to go via the cif file), and convert it to input for
your DFT code. The cell edges and cell angles of the deformed cell (which you
can put directly in a P1-cif) are found in this way from the information in the
standard root tensor (apply cyclic permutations for the other cell vectors and
angles):

a =
√
a2x + a2y + a2z (10)

α = arccos

(
bxcx + bycy + bzcz

bc

)
(11)

This results in these values for the deformed aluminum cell (with δ = 0.03):

a2 = a = 4.037529 Å

b2 = a
√

1 + δ2 = 4.039345 Å
c2 = a = 4.037529 Å
α = 90◦

β = 90◦

γ = 88.28087◦

(12)

4 step 4: compute the stress tensor for the de-
formed crystal

Do a static DFT calculation for your deformed cell, and inspect whether or not
there are forces on any of the atoms. If there are internal degrees of freedom,
then optimize the positions of the atoms (only the positions, do not change
the volume or shape of the deformed cell).

Once you have optimized the positions, determine the stress tensor for this
deformed cell. The deformed fcc-Al example we are examining here has no forces
on the atoms, hence we can compute the stress tensor right away and read it
from the output of the DFT code. Most DFT codes report the stress tensor as
the external stress: the stress that has to be applied to keep the crystal in the
given shape (defined as positive when pointing inward). What we will need in
the stress-strain relation we are building is, however, the internal stress: the
stress by which the material keeps itself in the given shape (defined as positive
when pointing outward). Both have opposite signs1. Therefore, if your DFT

1Compare this to the force of a mass on an elongated spring: either you consider the force
you need to exert on the mass to keep that elongation, or you consider the force by which
the spring pulls back on the mass. Both forces are identical in magnitude, yet have opposite
signs.
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code reports the external stress (as most do), you will need to invert the
signs of the stress tensor components in order to construct the tensor
Σ (units: GPa):

Σ =

 −0.166 0.937 0.000
0.937 −0.203 0.000
0.000 0.000 0.011

 −→

−0.166
−0.203

0.011
0.000
0.000
0.937

 (13)

The column notation at the right hand side is Voigt notation, which we will
need later on. It is only a different way of writing the 6 independent elements
that are present in this symmetric 3x3 matrix. The conversion between matrix
and Voigt notation for the stress tensor is:

 σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 −→


σxx
σyy
σzz
σyz
σxz
σxy

 (14)

In contrast to the notation conversion for the strain tensor that we will meet
soon, there are no factors of 2 involved in this conversion.

5 step 5: determine the strain tensor for the
deformed crystal

Now compute the Green-Lagrange strain tensor for this deformation. This does
not require DFT, and can be done in two ways :

5.1 strain tensor via the Bilbao server

Fill out the values for the undeformed and deformed cell edges and angles in the
strain tool of the Bilbao server at http://cryst.ehu.es/cryst/strain.html . For
our example, these are the two input strings needed for the undeformed and the
deformed cell:

4.037529 4.037529 4.037529 90 90 90

4.037529 4.039345 4.037529 90 90 88.28087

The output you have to look at is the “Finite Lagrangian Strain Tensor
(finite deformation)”:

E =

 0.000000 0.015007 0.000000
0.015007 0.000450 0.000000
0.000000 0.000000 0.000000

 (15)
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The Bilbao server gives this tensor as a symmetric 3x3 matrix. We will need it
in Voigt notation (column with 6 elements) rather than in 3x3 matrix notation
(there is no information loss, because the Green-Lagrange strain tensor is always
symmetric). The translation from one to the other notation is:

 εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 −→


εxx
εyy
εzz

2εyz
2εxz
2εxy

 (16)

(Mind the factors 2! These are not there in the Voigt notation of the stress
tensor.) For the aluminum example, the output of the Bilbao server in Voigt
notation should therefore be written as:

E =


0.000000
0.000450
0.000000
0.000000
0.000000
0.030014

 (17)

5.2 strain tensor via its definition

If you don’t have access to the Bilbao server strain tensor tool, you can create the
strain tensor manually via the definition of the Green-Lagrange strain tensor:

E =
1

2

(
FTF − I

)
(18)

(T stands for transposed, I is the unit matrix) For our example, this gives:

E =

 0 δ
2 0

δ
2

δ2

2 0
0 0 0

 (19)

We will need this strain tensor in Voigt notation (column with 6 elements)
rather than in 3x3 matrix notation (there is no information loss, because the
Green-Lagrange strain tensor is always symmetric). The translation from one
to the other notation is the same as given above, and is repeated here:

 εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 −→


εxx
εyy
εzz

2εyz
2εxz
2εxy

 (20)
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(Mind the factors 2! These are not there in the Voigt notation of the stress
tensor.) For our deformed fcc-Al example, this becomes:

E =



0
δ2

2
0
0
0
δ

 (21)

Verify that this is identical to what the Bilbao server gave (for δ = 0.03).
The strain tool of the Bilbao server is most useful to determine the strain

tensor in a case where you know the volume and shape of the undeformed
and deformed unit cells. In the case of the aluminum example, however, we
do already know the deformation gradients, because we imposed them. This
will always be the case when you’re goal is to calculate elastic constants via
the stress tensor procedure. Therefore, it is straightforward to write down the
strain tensor directly via the definition, without need for the Bilbao server.

6 step 6: stress-strain relation

The stiffness tensor relates the strain components with the stress components
via the elastic constants Cij in the following way (mind the factors 2) :

σxx
σyy
σzz
σyz
σxz
σxy

 =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




εxx
εyy
εzz

2εyz
2εxz
2εxy

 (22)

As we know for the aluminum example both the strain components ε and the
stress components σ, the above expression gives a set of equations with the
elastic constants Cij as the unknowns. In the next step, we will collect even
more of these equations, until we have a system of equations that is sufficiently
large to find all Cij .

7 step 7: repeat from step 2 (6x)

Repeat the preceding procedure starting from step 2, with other deformation
gradients that are independent from each other, until you have it done for
6 deformations. Any set of 6 deformations is a good one, as long as they
are independent. However, the following choice of six qualitatively different
deformations is convenient and recommended:

F1 =

 1 + δ 0 0
0 1 0
0 0 1

 F2 =

 1 0 0
0 1 + δ 0
0 0 1

 F3 =

 1 0 0
0 1 0
0 0 1 + δ


6



F4 =

 1 δ 0
0 1 0
0 0 1

 F5 =

 1 0 δ
0 1 0
0 0 1

 F6 =

 1 0 0
0 1 δ
0 0 1

 (23)

For F1 to F3 (tensile deformations), δ = δ1 = 0.01 is a good standard choice.
For F4 to F6 (shear deformations), take δ = δ2 = 0.03.

8 step 8: solve the system of equations

In order to obtain the elastic constants, write the stress-strain relations (Eq. 22)
for each of these 6 deformations, and put them in one matrix equation:

σ11 σ12 σ13 σ14 σ15 σ16
σ21 σ22 σ23 σ24 σ25 σ26
σ31 σ32 σ33 σ34 σ35 σ36
σ41 σ42 σ43 σ44 σ45 σ46
σ51 σ52 σ53 σ54 σ55 σ56
σ61 σ62 σ63 σ64 σ65 σ66

 = (24)


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




ε11 ε12 ε13 ε14 ε15 ε16
ε21 ε22 ε23 ε24 ε25 ε26
ε31 ε32 ε33 ε34 ε35 ε36

2ε41 2ε42 2ε43 2ε44 2ε45 2ε46
2ε51 2ε52 2ε53 2ε54 2ε55 2ε56
2ε61 2ε62 2ε63 2ε64 2ε65 2ε66


Mind the indices in this equation. The elastic constants are repeated from
Eq. 22, with indices that emphasize this is a symmetric matrix. In σij or εij ,
double digits are now used as indices, in contrast to the double characters we
used up to now. The column index j refers to the number of the deformation
(first deformation, second deformation,...), while the row index i refers to the
position in the Voigt (or column) notation: σ24 is the yy-component of the stress
tensor for the 4th deformation.

For the fcc-Al example, this is the resulting matrix with all six stress tensors
(you’ll recognize the 4th column, which is the stress tensor for the 4th deforma-
tion, as we found before):

Σ =


1.120 0.502 0.502 −0.166 −0.166 0.011
0.502 1.120 0.502 −0.203 0.011 −0.166
0.502 0.502 1.120 0.011 −0.203 −0.203
0.000 0.000 0.000 0.000 0.000 0.937
0.000 0.000 0.000 0.000 0.937 0.000
0.000 0.000 0.000 0.937 0.000 0.000

 (25)
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In the matrix with all strain tensors, you’ll recognize the 4th column too:

E =



δ1 +
δ21
2 0 0 0 0 0

0 δ1 +
δ21
2 0

δ22
2 0 0

0 0 δ1 +
δ21
2 0

δ22
2

δ22
2

0 0 0 0 0 δ2
0 0 0 0 δ2 0
0 0 0 δ2 0 0


(26)

The last step is now to search the inverse of the E-matrix (see Sec. 9, either
symbolically or numerically), right-multiply both sides of Eq. 24 by this inverse,
work out the multiplication of the Σ-matrix with this inverse (see Sec. 9), and
eventually you can read all C-values from this product.

As this procedure is using always the same 6 deformations, the inverse of
the E-matrix can be computed symbolically once and for all:

E−1 =



1
δ1

0 0 0 0 0

0 1
δ1

0 0 0
− δ2

2

δ1+
δ2
1
2

0 0 1
δ1

− δ2
2

δ1+
δ2
1
2

− δ2
2

δ1+
δ2
1
2

0

0 0 0 0 0 1
δ2

0 0 0 0 1
δ2

0

0 0 0 1
δ2

0 0


(27)

Filling out the values δ1=0.01 and δ2=0.03 we used here, yields:

E−1 =


99.50249 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 99.50249 0.00000 0.00000 0.00000 −1.49254
0.00000 0.00000 99.50249 −1.49254 −1.49254 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 33.33333
0.00000 0.00000 0.00000 0.00000 33.33333 0.00000
0.00000 0.00000 0.00000 33.33333 0.00000 0.00000


(28)

The product of Σ (Eq. 25) and E−1 (Eq. 28) gives all elastic constants for
fcc-aluminum (in GPa):

ΣE−1 = C =


111.4 50.0 50.0 −0.4 −6.3 −6.3
50.0 111.4 50.0 −6.3 −0.4 −8.4
50.0 50.0 111.4 −8.4 −8.4 −0.4
0.0 0.0 0.0 31.2 0.0 0.0
0.0 0.0 0.0 0.0 31.2 0.0
0.0 0.0 0.0 0.0 0.0 31.2


(29)

This result must be a symmetric 6x6 matrix. The fact that it isn’t exactly sym-
metric (the upper right 3×3 block) is due to numerical noise: more converged
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digits in the stresses, more digits used in the matrix elements,. . . would help. To
fight against such numerical noise, multiple choices for δ1 and δ2 can be made
(in particular also choices with the opposite sign: δ1 = ±0.01, δ2 = ±0.03),
after which the resulting stiffness tensors (C-matrices) are averaged.

In any case, the result in Eq. 29 suggests that there are three non-zero elastic
constants:

C11 = 111 GPa (= C22 = C33)

C12 = 50 GPa (= C23 = C13) (30)

C44 = 31 GPa (= C55 = C66)

The numerical uncertainty is of the order of magnitude of the largest values
that should have been zero by symmetry: 5-10 GPa. We can compare these
results with the DFT predictions for fcc-Al in Materials Project, which are
at the same PBE-level of theory: C11=104 GPa, C12=73 GPa, C44=32 GPa
(https://materialsproject.org/materials/mp-134). Except perhaps for C12, this
is fair agreement.

The procedure as described here, is valid for any crystal, regardless how
(un)symmetric it is. However, as the stress tensor values for the fcc-Al example
suggests, you could use less than 6 deformations if you consider symmetry. For
fcc-Al, one tensile and one shear deformation would have been sufficient, when
complemented with the proper symmetry considerations. If you don’t want to
care about the symmetry of your crystal, then just do all six deformations.

The same elastic constants can be calculated using the total energy procedure
as well, and compared to the values found here.

9 resources and tools

In the spirit of this course, every work flow should be possible using free online
tools. Hence, here are some resources to help with the matrix math:

Matrix inversion online :
http://matrix.reshish.com/inverse.php
https://www.symbolab.com/solver/matrix-inverse-calculator
http://onlinemschool.com/math/assistance/matrix/inverse/

Matrix multiplication online :
http://matrix.reshish.com/multiplication.php
http://www.bluebit.gr/matrix-calculator/matrixmultiplication.aspx
http : //onlinemschool.com/math/assistance/matrix/multiply/

If you want to have more details about the formalism behind the procedure
discussed in this document, then you might find this open online course on
continuum mechanics useful: http://www.continuummechanics.org . Concise,
yet very clear. In particular the sections about Deformation Gradients (IV.A),
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Polar Decomposition (IV.B) and Green & Almansi Strains (IV.F) play a role
here.

Another description of the underlying theory, more focussing on the DFT as-
pect, is available at https://www.materialsproject.org/docs/calculationselasticity.
It is basically a repetition of the information in http://dx.doi.org/10.1038/sdata.2015.9
(de Jong et al. 2015). The original literature on this method is available at
http://dx.doi.org/10.1103/PhysRevB.65.104104 (Le Page and Saxe, 2002).
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