
compmatphys.org : project topic 2 (2022-2023)

When doing DFT calculations, we want to keep numerical noise under control. Only when a predicted

value – e.g. the total energy of a crystal – is up to a known level free of numerical noise, it makes

sense to compare it to experiments or to more advanced calculations. That is why you do

convergence testing: if the size of the basis set or the density of the k-mesh would not be sufficiently

large, you get predictions with random numerical noise on top of it. That is also why code

comparison studies are done (e.g. https://doi.org/10.1126/science.aad3000): if multiple independent

DFT codes predict the same value for a given quantity (within some error bar), you can trust that the

numerical noise is at most of the level of the differences among these codes.

One aspect of numerical noise that has not systematically been investigated for DFT codes so far, is

the impact of the choice of the unit cell on numerical noise. There is an infinite number of choices for

a primitive unit cell of a given crystal, and on top of that you can represent the same crystal also by

an infinite number of non-primitive cells (supercells). If all of these cells represent the same crystal,

then all of them should lead to the same value for, for instance, the total energy. However, the

extent to which this is true or not, has never been systematically studied. Is it really so that choosing

a weird primitive cell with very small or very large angles leads to the same energy as the standard

choice? If the answer to this question would be ‘no’, then the numerical uncertainty on DFT

predictions may be larger than currently assumed.

Well, let’s find out…!

Task 1 : basic convergence testing

You’ll examine one of the simplest metals, fcc-Al. It is a case that is often used for testing purposes.

Search a cif file (an experimental one or a calculated one) with a lattice parameter close to the

optimal one (it does not need to be spot on, within 5% is OK). Make sure you have a primitive cif file,

with just one atom. Do a convergence study for the basis set size and k-mesh, to inspect how the

total energy behaves with respect to these two convergence parameters. What is the remaining

numerical noise on this calculation?

Note: for later convenience, you better specify the k-mesh quality in a lattice-independent way (hints

how to do so will be added here later)

Task 2 : E(V) scan and EOS fit

With a good and efficient basis set and k-mesh determined in the previous task, do a E(V) scan of this

crystal. Determine the equilibrium volume, bulk modulus and its pressure derivative by a Birch-

Murnaghan fit. Make a cif file for the equilibrium case – this is the crystal volume with which you will

continue.

Task 3 : constructing alternative unit cells

With the hints/links/info give here, familiarize yourself with the procedure to generate a cif file for

any choice of primitive cell:

This series of 3 pictures show a rectangular bravais lattice, with three choices of primitive cells. You

can convince yourself that each cell represents 1 bravais lattice point (that’s why it is called

primitive), and that the area of the 3 cells is identical.

https://doi.org/10.1126/science.aad3000

The CELL_PARAMETERS block in the Quantum Espresso input file is a matrix that contains as its

columns the 3 components of each of the 3 vecotrs that span the unit cell (in alat units). This would

be the values for a cubic cell that is aligned with the axes of the axes system:

Figure out a procedure by which you can convert any choice of primitive cell into the proper input

matrix (note: any choice of primitive cell will contain 1 aluminum atom only, and that atom can stay

at position (0, 0, 0). The CELL_PARAMETER block is the only thing that needs to be changed. You can

visualize your input files by xcrysden, to see whether they do indeed represent the cell you had in

mind, and whether this still leads to a proper fcc-Al crystal.

Task 4 : numerical noise for primitive unit cell choices

Calculate the total energy for the equilibrium volume, for a list of primitive cells. Try to build

systematic series of primitive cells, like the series of which the start is illustrated in the 3 pictures

under task 3. Don’t be afraid to go to extreme cases, where some of the cell angles become very

small. Calculate the total energy for each cell, keeping strictly the same basis set size and same k-

mesh density (i.e. the optimal ones you determined before). Inspect what happens to the total

energy: does it stay constant? Does it vary? If it varies, how much? Or does it start varying only after

a certain point in your series? …

Task 5 : numerical noise for supercells

Make a few supercells, like the conventional one (4 atoms), 2x1x1 primitive cells (2 atoms), 2x2x1

primitive cells (4 atoms), 2x2x2 primitive cells (8 atoms), 2x1x1 conventional cells (8 atoms), … and

inspect again the total energy (per atom) : does it stay constant? Does it vary? If it varies, how much?

Task 6 : combining supercells and alternative cell choises

Depending on the outcomes of tasks 4 and 5, it could be useful to inspect for a few of the supercells

what happens if you construct a supercell of the same size with a different choice of lattice vectors

(as in task 4).

Task 7 : formulating conclusions

Formulate general conclusions on the behaviour you observed. How large do you estimate the

numerical noise due to unit cell choice to be?

Some additional hints:

If your calculation crashes, complaining about not being able to allocate sufficient memory, then this

is what you can do :

If you open the output file by a text editor (nano, full command is “nano name.out”), you’ll see

somewhere in the initial part an estimation of the memory that will be used. Does that make sense

for your laptop or not?

You can play with the k-mesh (go down to as small as 1x1x1) and basis set size (encut, even a small

value of 5 or 10 Ry is useful to see whether the calculation can run), and inspect how that affects the

predicted memory use.

The virtual machine has a built-in max memory use, in order not to crash your laptop. You can

change this by clicking the gear symbol before launching Quantum Mobile, then

system/motherboard, and use the slider to increase the amount of memory it is allowed to use

(compare that with the estimate from the out file, and you’ll see whether or not you have a chance it

will run). See screenshot underneath.

If you select the ‘processor’ tab next to ‘motherboard’, you can use more cpu’s of your laptop. You

can test on a smaller case whether or not this has any effect. (I did not try this with Quantum Mobile

yet, it may be you’ll need to launch the calculation via “mpirun -np 4 pw.x ….” in order to use 4 cpus,

or a different number.)

If you cannot get anything running, or in case you hit the ceiling for a given basis set size or kmesh,

consider continuing on the HPC (access instructions available in the “let’s play” tile, first week)

How to install the pseudopotential library once and for all

Go to https://www.materialscloud.org/discover/sssp/table/efficiency and click the ‘Pseudo’ button

to download the library. It will download a tar.gz file with a long name, here abbreviated as

SSSP.tar.gz.

Bring this file via the shared folder to Quantum Mobile, and copy it from there to the top folder

where you have your subfolders with calculations. Unzip and unfold the file there by the commands:

gunzip SSSP.tar.gz

tar -xvf SSSP.tar

Now you’ll have a folder with one pseudopotential file per element. Take note of the name of the

files for the elements you need (UPF files).

In your calculation folder, where you have your Quantum Espresso input file, set the pseudo_dir

variable to the location of this pseudopotential folder, for instance:

pseudo_dir='/home/max/work/my-pseudo-library',

Now you can list under the ATOMIC_SPECIES block the name of the UPF files you have take note of.

https://www.materialscloud.org/discover/sssp/table/efficiency

