
convergence testing 

The procedure that is sketched in this document is one you should follow for every new crystal you 

want to calculate using any DFT code. Sticking strictly to this procedure guarantees that you will 

calculate numerically meaningful results, rather than random noise. This is what is meant by making 

a DFT calculations that is (numerically) converged. 

Please make sure you read before the document about ‘three major keywords in the QE input file’. 

The present document is an exercise about what you read there. 

You will make this exercise for the halite mineral, also known as rock salt. Start your virtual machine, 

open a terminal window, descend into your working folder (create a new subfolder for halite), and 

get a cif file for this structure from a crystallographic database (more details about the latter will 

follow in the chapter on crystallography): 

cd 

cd workQE 

mkdir halite 

cd halite 

wget http://www.crystallography.net/cod/9008678.cif 

cif2cell 9008678.cif -p quantum-espresso -o halite.in 

 

Download pseudopotentials for the elements chlorine and sodium: 

wget http://pseudopotentials.quantum-espresso.org/upf_files/Na.pbesol-spn-kjpaw_psl.1.0.0.UPF 

wget http://pseudopotentials.quantum-espresso.org/upf_files/Cl.pbe-n-kjpaw_psl.1.0.0.UPF 

 

If you want to use the SSSP pseudopotential library instead (recommended), then use the procedure 

described in the addendum of the explanation on ‘a basic calculation’ (the document with the Si 

example). You will then use a different name for the pseudopotential file in the ATOMIC_SPECIES 

block, and also your pseudo_dir variable will look differently. 

 

Add the same kind of extra lines to halite.in as you did for the basic silicon example before. The final 

file should look like this: 

#************************************************************************************ 

#*                  Generated by cif2cell 1.2.10 2018-09-17 14:27                   * 

#*  T. Bjorkman, Comp. Phys. Commun. 182, 1183-1186 (2011). Please cite generously. * 

#*                                                                                  * 

#*                Data obtained from COD. Reference number : 9008566                * 

#*                                         ()                                       * 

#*               Wyckoff, R. W. G., Crystal Structures 1, 7-83 (1963)               * 

#************************************************************************************ 

 

&CONTROL 

  calculation='scf', 

  outdir='.', 

  prefix='halite', 

https://en.wikipedia.org/wiki/Halite


  pseudo_dir='.', 

  verbosity='low', 

  tprnfor=.true., 

  tstress=.true., 

/ 

 

 

&SYSTEM 

  ibrav = 0 

  A =    5.64056 

  nat = 2 

  ntyp = 2 

  ecutwfc=66, 

  ecutrho=323, 

  input_dft='pbe', 

  occupations='smearing', 

  smearing='mv', 

  degauss=0.005d0, 

/ 

 

&ELECTRONS 

  conv_thr=1d-08, 

  mixing_beta=0.7d0, 

/ 

 

CELL_PARAMETERS {alat} 

  0.500000000000000   0.500000000000000   0.000000000000000 

  0.500000000000000   0.000000000000000   0.500000000000000 

  0.000000000000000   0.500000000000000   0.500000000000000 

 

ATOMIC_SPECIES 

  Na   22.98900  Na.pbe-spn-kjpaw_psl.1.0.0.UPF 

  Cl   35.45150  Cl.pbe-n-kjpaw_psl.1.0.0.UPF 

 

ATOMIC_POSITIONS {crystal} 

Cl   0.500000000000000   0.500000000000000   0.500000000000000 

Na   0.000000000000000   0.000000000000000   0.000000000000000 

 

K_POINTS {automatic} 

  3 3 3 0 0 0 

 

1. choose your exchange-correlation functional 

The first choice is an easy one, and does not really affect the numerical convergence. Which 

approximation to the exchange-correlation functional will we take? This choice will determine in a 

rather unpredictable way how much your final results will deviate from the (unknown) true result, 

obtained by using the (unknown) exact exchange-correlation functional. 



In this course, we will use always the PBE exchange-correlation functional, unless explicitly noted. 

This means that in the &SYSTEM block you should have this line: 

input_dft='PBE', 

 

Cross-check that the two pseudopotential files are indeed for the PBE functional as well (we’ll see 

later how to do that systematically, but for now you can verify that the long name of the 

pseudopotentials mention the string ‘pbe’). 

 

In the next two steps, we’ll find out how to guarantee that you’ll find the numerically correct PBE-

predictions, and not a value with random noise. 

 

1.5 suggested default for the basis set size 

(this is step one-and-a-half, as not every pseudopotential file has the required information to 

perform this step – in that case, just skip it) Open the two pseudopotential files that you 

downloaded. Sometimes, the header of this file contains a suggestion for the basis set size for the 

wavefunctions (ecutwfc) and the basis set size for the density (ecutrho). If this is information is 

present, let’s make use of it. 

In those pseudopotential files, you’ll see these lines: 

Na-file: 

    Suggested minimum cutoff for wavefunctions:  66. Ry 

    Suggested minimum cutoff for charge density: 323. Ry 

 

Cl-file: 

    Suggested minimum cutoff for wavefunctions:  45. Ry 

    Suggested minimum cutoff for charge density: 223. Ry 

 

This means that ecutwfc=66 and ecutrho=323 (for both parameters the maximum of the two 

suggested values) would be a fair choice for the basis set sizes. We’ll test it explicitly in step 3, but for 

now we’ll use these values as a start.  

 

2. choose your k-mesh 

The number of sampling points is expressed as a three-dimensional grid in reciprocal space (“k-

mesh”), and is set in &ELECTRONS block with the K_POINTS keyword. The default is a 1x1x1 mesh. To 

set a 3x3x3 mesh, use  

K_POINTS {automatic} 

  3 3 3 0 0 0 

 

To use a 5x5x5 mesh, use 



K_POINTS {automatic} 

  5 5 5 0 0 0 

 

The goal is to run several DFT calculations, with increasingly dense k-meshes. You will monitor one or 

more experimentally observable properties, and see how these evolve as a function of k-mesh 

density. As soon as these properties do not depend any longer on the density of the mesh, you have 

reached the result that corresponds to an ‘infinitely’ dense mesh (i.e. you reached the numerically 

correct result). These experimental property is then said to be converged with respect to k-mesh 

density. 

The hydrostatic pressure on a given unit cell (we’ll learn later what this means) is an experimentally 

observable property that is rather sensitive to numerical precision. If this property is converged with 

respect to k-mesh, many other less sensitive properties will be converged too. Therefore, it is a good 

idea to monitor the hydrostatic pressure (that’s why we added the tstress keyword). 

You get a table with the results hereafter. Perform a few of these calculations (or all of them) 

yourself, to make sure you can reproduce this table. The input file that has been given above is the 

one that has been used for the 3x3x3 mesh in this series.  

k-mesh Hydrostatic pressure (kbar) Typical run time (seconds) 

1x1x1 243.81   7.44 

3x3x3 3.02 11.14 

5x5x5 1.23 13.80 

7x7x7 1.09 19.14 

9x9x9 1.12 28.86 

11x11x11 1.13 43.80 

 

From this table, you see that the calculation time increases with increasing k-mesh. That’s why you 

cannot simply take by default a very dense and safe k-mesh: the calculations would take way too 

long. If your k-mesh is too coarse (say the 1x1x1 mesh) then your calculation is superfast (8 seconds 

only), but the predicted hydrostatic pressure is nuts. If you do only this single calculation, you won’t 

know it is nuts, however. You see this only if you try a denser k-mesh: the predicted pressure 

changes from 244 to 3 kbar. If you keep increasing the k-mesh density, the hydrostatic pressure 

stabilizes around 1.1 kbar. To stay on the safe side, let’s select a 7x7x7 mesh as our compromise. 

With this mesh, you spend 19 seconds to find the converged result. If you would take the 11x11x11 

mesh, then you would need 44 seconds to find… the same result. The difference between 19 and 44 

seconds might not feel to be much. But if you have a calculation that takes 3 hours or even 3 days, 

you don’t want to spend 6 hours or 6 days to find exactly the same prediction. If your resources are 

limited, you might dare to use a 5x5x5 mesh too, which will give you probably a similar prediction in 

even less time. 

Conclusion: it is a good compromise to set the k-mesh to 7x7x7. We’ll continue with that value to 

select the proper basis set size. 

 

3. choose your basis set size 



It is usually OK to keep ecutrho as a multiple of ecutwfc. We can therefor vary ecutwfc first, keeping 

ecutrho at the same factor times ecutwfc. Once a good value for ecutwfc has been found, the story 

can be repeated for that multiplication factor. With the suggested values of ecutwfc=66 and 

ecutrho=323, the multiplication factor is nearly 5. Let’s make it exactly 5 for convenience (that gives 

ecutwfc=66 and ecutrho=330, and due to that small change in ecutrho the hydrostatic pressure on 

the corresponding line in the next table will be slightly different from 1.1 kbar). Keeping the factor 5 

fixed, let us try a few values for ecutwfc: 

Ecutwfc Ecutrho Hydrostatic pressure 
(kbar) 

Typical run time 
(seconds) 

16 80 -5324.4 4.29 

26 130 -865.6 6.54 

36 180 -268.2 10.54 

46 230 -9.0 12.42 

56 280 4.3 14.34 

66 330 0.9 19.18 

76 380 4.4 24.55 

86 430 7.1 31.99 

96 480 7.8 34.94 

…    

200 800 8.0 111.92 

 

The calculation time increases with the value of ecutwfc, hence also for this parameter it is important 

to select the minimal value that gives you safely the converged result.  

The table shows that the initial ecutwfc=66 was not bad: it gives a hydrostatic pressure of 0.9 kbar 

(or 1.1 kbar with ecutrho=323), which is only a few kbar away from the high-precision value of 

8.0 kbar. At least this is much better than what a basis set with ecutwfc=36 would give. Is it worth to 

spend 112 seconds to find the correct value of 8.0 kbar? The table shows that if we are satisfied with 

an uncertainty of 1 kbar, we can use ecutwfc=86. In only 32 seconds it gives us a hydrostatic pressure 

of 7.1 kbar, which is less than 1 kbar away from the correct value of 8.0 kbar. Let’s therefore keep the 

slightly rounded value of ecutwfc=90 from now on. 

The last step is to examine the multiplication factor between ecutwfc and ecutrho, which as fixed at 

5 so far. Let’s examine it from 2 to 10 in some steps: 

factor Ecutrho Hydrostatic pressure 
(kbar) 

Typical run time 
(seconds) 

2 180 9.11 18.3 

3 270 7.88 24.3 

4 360 7.43 28.5 

5 450 7.56 29.5 

6 540 7.70 30.6 

7 630 7.48 34.2 

…    

10 900 7.61 40.5 

 



The effect is small, and everything from a factor of 4 onwards looks acceptable. Given the very small 

time difference between a factor 4 and 5, we can stay on the safe side and take ecutrho=450 (factor 

= 5). 

 

Conclusion 

 
The tests as described above for the k-mesh and basis set size MUST be done for every new type of 

calculations you will perform. Without such tests, you may either be calculating noise rather than 

stable values, or you may have precise results but are spending 10 times more computing time then 

you need. This is called “convergence testing”. 

For the halite crystal, a good set of values turns out to be: 

7x7x7 k-mesh 

ecutwfc=90 Ry 

ecutrho=450 Ry 

This ensures a hydrostatic pressure that is converged to about 1 kbar or better. If you’re happy with a 

slightly more noisy value of the pressure, then a k-mesh of 5x5x5, ecutwfc=76 Ry and ecutrho=304 Ry 

are fine too. The latter calculation will be faster, the former will be more precise. There will always 

be a trade-off between precision and speed. 

 

Addendum 

There is currently work going on at several places to automatize and/or accelerate these 

convergence testing procedure. We mention here one of these newer tools, that is not yet perfect 

but may give at least a few hints: 

https://www.ctcms.nist.gov/jarvisml/  

It goes as follows (for the same halite crystal we just dealt with): 

Use cif2cell to convert the cif file into the input format for the VASP code: 

cif2cell 9008678.cif -p vasp -o poscar --vasp-format=5 --vasp-cartesian 

nano poscar 

 

copy the 2nd line up to the line before ‘cartesian’” 

1.0 

  0.000000000000000   2.820280000000000   2.820280000000000 

  2.820280000000000   0.000000000000000   2.820280000000000 

  2.820280000000000   2.820280000000000   0.000000000000000 

  Na  Cl 

1  1 

 

https://www.ctcms.nist.gov/jarvisml/


Then do this conversion again, in a slightly different way: 

cif2cell 9008678.cif -p vasp -o poscar --vasp-format=5 

nano poscar 

 

copy the text from ‘Direct’ onwards : 

Direct 

  0.000000000000000   0.000000000000000   0.000000000000000 

  0.500000000000000   0.500000000000000   0.500000000000000 

 

Glue both blocks of text together, preceded by ‘My_3D_material’, until you get: 

      My_3D_material 

   1.0 

  0.000000   2.820280   2.820280 

  2.820280   0.000000   2.820280 

  2.820280   2.820280   0.000000 

  Na  Cl 

   1   1 

      direct 

  0.00000   0.00000   0.00000 

  0.50000   0.50000   0.50000 

 

Paste this into the white box on the JARVIS-ML website, and press ‘send’. 

As output, you will get an estimate of the required k-mesh (1x1x1, quite a bit lower than we tested it 

should be), an estimate for the required basis set size (energy cut-off, only for the VASP code, not for 

Quantum Espresso), and even some estimated properties without doing the actual DFT calculation 

(formation energy, elastic moduli,…) 

Again, this is all quite rough and premature, but if you start with a new crystal and you have really no 

idea about the settings you should use to even start testing, this tool might give you a first hint for 

the k-mesh at least: 

 

Bandgap OptB88vdW (eV): 4.07 

Bandgap TBmBJ (eV): 6.41 

Cut-off (eV): 594.04 

Formation energy/atom (eV): -1.976 

Kpoint: 1x1x1 

Modulus bulk (GPa): 27.62 

Modulus shear (GPa): 17.74 

Space-group: Fm-3m 

Static Refractive-index OptB88vdW (y): 1.48 

Static Refractive-index OptB88vdW (z): 1.36 

Static Refractive-index TBmBJ (y): 1.59 

Static Refractive-index TBmBJ (z): 1.44 

Static refractive-index OptB88vdW (x): 1.48 

Static refractive-index TBmBJ (x): 1.49 



 

 

 


