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The ability for materials to deform, eg. ductility is critical in engineering and material science. A
straightforward way to determine if a material is ductile or not is the Pugh criterion where the bulk-,
shear- and Young-modulus are brought into relation. To determine these properties, an ab initio
study using density functional theory (DFT) is employed using the Quantum Espresso software.
Both the stress-tensor formalism, and the Birch Murnaghan equation of state to determine the bulk
modulus is used. Our study includes elements such as Ac, Ca, Al, Ce, La, Mg, Ni, Pt, Po, Se, Si,
and Th. These calculations allowed us to study ductility, even for hypothetical phases that cannot
be studied experimentally.

I. INTRODUCTION

When subjected to a tensile test, materials will gener-
ally exhibit two types of behaviors. Some materials elon-
gate and become narrower in the middle before eventu-
ally breaking at their thinnest point; these materials are
classified as ductile. Other materials break with almost
no elongation, these are referred to as non-ductile mate-
rials. The extent of the deformation before breaking can
be taken as a measure of ductility.
In his 1954 paper, S.F.Pugh proposed that the ductil-
ity of a material can be inferred from the much simpler
elastic moduli, allowing the ductility of a material to be
determined without resorting to elaborate tensile tests[1].
The Pugh criterion states that a metal is expected to be
ductile if B/G > 1.75 or ν > 0.26, where ν is Poisson’s
ratio, B the bulk modulus and G the shear modulus.
This research utilises DFT to explore the Pugh criterion
for an array of unary face-centered cubic (FCC) crys-
tals. Experimental results are limited to elements that
occur naturally in fcc phase, but DFT enables us to ex-
plore elements across the periodic table and investigate
the physical mechanisms underlying ductility.

II. METHODOLOGY

All calculations were performed using the Quantum-
Espresso (QE) package [2–4], versions 7.3. For all
materials, an ultrasoft pseudopotential (USPP) was
used. For this pseudopotential, a Generalized Gradient
Approximation + Spin-Orbit coupling (GGA+SO) for
the exchange correlation energy was used. For the
exchange-correlation (XC) functional, the modified
Perdew–Burke–Ernzerhof (PBESOL), which has been
optimized for solids, had been used for Ca, Al, Pt, Se,
Si, Ni, Mg and Po [5]. Due to this modified PBESOL
not being available for all elements, a PBE functional
was used from the QE pseudopotential database [6] for
Th, Ac, Ca and La.

The motivation behind the use of spin-orbit coupling
in the pseudopotential is due to the high number of
lanthanides and actinides in the elemental table. For
consistency, this was then also applied to all other
elements.
The choice of the elements used in this work may seem
arbitrary, but these elements were picked specifically
such that at least two elements are within a certain
property. These properties are: Orbital type, elemental
class (semi-metal, poor metal, etc), proton count and
valence electrons (Except for Nickel and Platinum which
have respectively 10 and 1 valence electron(s)). Two are
chosen such that correlation coefficients between these
properties (+some more) and the elastic properties can
be calculated. This is then used to predict the elastic
properties for other elements in the table.
As is common in density functional theory (DFT)
calculations, the first task was to carry out conver-
gence testing for all systems of interest to determine
appropriate computational parameters. Specifically, the
parameters were converged with respect to the hydro-
static pressure to ensure the accuracy of subsequent
calculations. First, the size of the k-mesh was increased
incrementally until the variation of the hydrostatic
pressure became minimal. Similarly, the kinetic energy
cutoffs of the wavefunction (ecutwfc) and charge density
(ecutrho) were converged. Based on the convergence
testing results, a standard set of parameters was decided
which works for all different elements and is used in all
future calculations. The k-mesh size is set to 9x9x9,
while the kinetic energy cutoff values are defined as
ecutwfc = 100Ry and ecutrho = 400Ry.

Following this parameter optimization, a relaxation
calculation was performed on all systems to find the
ground state geometry. As all crystals of interest are
simple cubic FCC structures, the only degree of freedom
of the undeformed geometry is the lattice parameter.
Next, a Birch-Murnaghan (BM) equation of state fit was
applied to all systems. The purpose of this was two-fold.
Firstly, a Birch-Murnaghan fit returns the bulk modulus
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of the crystal in question. And secondly, it serves as a
means of geometry optimization which gives an extra
way to check the validity of the lattice parameter.

The final set of DFT calculations conducted was to de-
termine the elastic constants of the crystals. The shear
as well as the bulk modulus were computed from the
elastic constants. Bulk moduli calculated via the Birch-
Murnaghan fit and through the stress tensor method were
compared to check for internal consistency of the calcu-
lations. The elastic constants were determined using the
stress tensor method, where a set of deformations were
applied to each crystal and the elastic constants deter-
mined by the matrix equation,

C = ΣE−1,

where Σ and E are the stress and strain tensors, respec-
tively, expressed in Voigt notation.
The applied stress tensors were of the following form

F1 =
(

1+δ1 0 0
0 1 0
0 0 1

)
, F2 =

(
1 0 0
0 1+δ1 0
0 0 1

)
, F3 =

(
1 0 0
0 1 0
0 0 1+δ1

)
,

F4 =
(

1 δ2 0
0 1 0
0 0 1

)
, F5 =

(
1 0 δ2
0 1 0
0 0 1

)
, F6 =

(
1 0 0
0 1 δ2
0 0 1

)
For the values of δ1 and δ2, follow-
ing combinations were used (δ1, δ2) =
{(0.01, 0.01), (0.03, 0.01), (0.01, 0.03), (0.03, 0.03)}.
In every case, this result was averaged with the negative
δ values to decrease computational errors. After this,
the resulting elastic constants were averaged.
The elastic constants are expressed in this 6x6 C-matrix,
which in theory has only three independent contributions
for a cubic crystal. The theoretical matrix has following
form

C =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


From these elastic constants, the bulk modulus and
shear modulus were calculated as B = C11+2C12

3 and

G = C11−C12+3C44

5 . From these moduli, the Poisson’s

ratio was calculated as ν = 3B−2G
2(3B+G) .

When the bulk modulus, shear modulus and Poisson’s
ratio were calculated, the Pugh criterion could be evalu-
ated.

III. RESULTS AND DISCUSSION

The equilibrium volume is calculated by conducting
a vc-relax calculation, an automatic optimisation proce-
dure available in QE. The results are shown in table I and

compared with different computational and experimental
sources. The first source employs Quantum-Espresso 7.0
using the PBE-GGA methods and Projector Augmented
Wave method (PAW ) for the electron-ion interactions
[7]. The second source uses VASP 5.2.2 with PBE-GGA-
PAW pseudopotentials [8]. The difference between the
calculated result and the result found in literature is ex-
pressed as ∆ = V1−V2

(V1+V2)/2
· 100%. For most elements,

the calculated V0 is in good agreement with the values
in literature. A notable difference between the computed
results and the reference papers is found for Cerium. This
can be explained by how the electrons are treated in the
pseudopotential, where in this paper the 4f -electrons are
in the ’core’ state. Those from the sources, [7, 8], use a
PAW pseudopotential where the 4f -electrons are con-
sidered as valance electrons. This is also in agreement
with other sources[9]. Furthermore, a somewhat larger
difference is found for the Lanthanides (La, Ce), possibly
because of the same reasoning as before.

[7] [7] [8] [8] Exp.
el. V0 V0 ∆ V0 ∆ V0 ∆

Mg 22.76 23.13 -1.63 23.03 1.17
Al 16.25 16.49 -1.49 16.47 -1.41 16.50a -1.59
Si 14.31 14.49 -1.22 13.96b 2.34
Ca 40.69 42.19 -3.62 42.17 -3.57 43.34c -6.31
Ni 10.32 10.84 -5.04 10.85 4.88 10.87a -0.28
Se 19.08 20.38 -6.58
La 33.10 36.95 10.98 37.10 11.40 35.20e -6.15
Ce 37.69 26.52 34.78 26.1 36.34 34.39e 9.17
Pt 15.04 15.66 -4.02 15.67 -4.10 15.09c -0.33
Po 33.51 32.56 2.89
Ac 45.46 45.55 -0.19 45.37 0.20 37.45c 19.32
Th 32.63 32.18 1.39 32.07 1.73 32.86c -0.7

a [10] b [11, 12] c [13] d [14] e [15]

Table I. Equilibrium volumes V0 in Å3 and differences ∆ in %
between two other computational methods and experimental
results.

Next, the Birch-Murnaghan equation of state is fit for 40
different volumes around the equilibrium volume of the
crystal in steps of 1%. From this, the bulk modulus is
calculated. The results are shown in table II, where they
are compared with different computational and experi-
mental sources. Again, the difference between the calcu-
lated result and the result found in literature is expressed
as ∆ = B1−B2

(B1+B2)/2
·100%. For this, there is a larger differ-

ence for materials in group 4 (Ni, Ce) and group 6 (Ce,
Pt, Po). Possibly, the BM-fit with this pseudopotential
isn’t the best choice for these elements. For the other
elements, the results are in agreement with literature.
Furthermore, the elastic constants were calculated us-
ing the stress tensor method with different deformations.
Table III shows the results for the elastic constants, as
well as the calculated bulk and shear modulus. The bulk
modulus is compared with the result from the BM fit.
Here we see the results are overall in agreement, which
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means the calculations are internally consistent.

[7] [7] [8] [8] Exp.
el. B0 B0 ∆ B0 ∆ B0 ∆

Mg 36.1 35.12 2.7 36.05 0.14 45a -21.9
Al 81.9 77.51 5.5 76.90 6.3 76a 7.5
Si 89.9 82.85 8.2 100a -10.6
Ca 17.1 17.37 -1.6 16.82 1.7 17a 0.6
Ni 232.6 202.29 13.0 197.87 14.93 180a 25.5
Se 84.9 69.42 20.1 83a 2.3
La 26.0 24.55 5.7 24.83 4.6 27b -3.7
Ce 29.9 38.12 -24.2 37.65 -22.9 22b 30.4
Pt 284.1 247.47 13.8 246.74 14.1 230a 21.0
Po 36.4 49.64 -30.8
Ac 25.6 23.89 6.9 21.63 16.8
Th 56.5 55.03 2.6 55.28 2.2 54a 4.5

a [16–18] b [17]

Table II. Bulk moduli B in GPa determined with a BM fit
of the FCC structures, compared between two computational
methods and experimental results with differences ∆ in %.

ϵ BM
el. C11 C12 C44 B B ∆ G

Mg 42.7 30.0 29.2 34.2 36.1 -5.41 20.0
Al 59.4 93.1 -59.7 81.8 81.9 -0.12 -42.5
Si 298.2 -20.0 157.0 86.1 89.9 -4.32 157.8
Ca 18.7 16.3 8.1 17.1 17.1 0.00 5.3
Ni 276.6 172.3 135.3 207.1 232.6 -11.60 102.0
Se 132.9 60.3 60.3 84.5 84.9 -0.47 50.7
La 39.2 22.2 10.6 27.9 26.0 7.05 9.8
Ce 43.3 24.6 23.0 30.9 29.9 3.29 17.6
Pt 363.3 248.1 68.4 286.5 284.1 0.84 64.1
Po 6.6 55.7 -18.6 39.2 36.4 7.41 -21.0
Ac 40.4 17.6 22.4 25.2 25.6 -1.57 18.0
Th 90.3 44.1 54.1 59.5 56.5 5.17 41.7

Table III. Elastic constants determined by the stress tensor
method ϵ in GPa and the difference ∆, in %, between the
bulk modulus of the stress tensor method and the BM fit.

Finally, the Pugh criterion is evaluated. To do this, the
values for the bulk modulus and shear modulus, calcu-
lated from the elastic constants, are used to calculate
B/G and Poisson’s ratio ν, this is displayed in table IV.
As discussed before, the Pugh criterion states that a ma-
terial is expected to be ductile if B/G > 1.75 or ν > 0.26.
By this criterion, the ductility of the different materials
is determined. For Aluminum and Polonium the value
of B/G is negative since these materials have a nega-
tive shear modulus in the fcc structure. Materials with a
negative shear modulus are not mechanically stable un-
less some specific constraints are met. In this case the
Pugh criterion can’t be evaluated.

To answer the question if there is the possibility to pre-
dict the elastic properties of materials across the table, a

element B (GPa) G (GPa) B/G ν Ductile

Mg 34.2 20.0 1.71 0.255 No
Al 81.8 -42.5 -1.92 0.814 /
Si 86.1 157.8 0.55 -0.069 No
Ca 17.1 5.3 3.20 0.358 Yes
Ni 207.1 102.0 2.03 0.288 No
Se 84.5 50.7 1.67 0.250 No
La 27.9 9.8 2.85 0.343 Yes
Ce 30.9 17.6 1.76 0.261 Yes
Pt 286.5 64.1 4.47 0.396 Yes
Po 39.2 -21.0 -1.87 0.825 /
Ac 25.2 18.0 1.40 0.212 No
Th 59.5 41.7 1.43 0.216 No

Table IV. Evaluation of the Pugh criterion

careful analysis of the correlation between different prop-
erties and their obtained values has to be made. In this
work, the choice was made to use both categorical and
continuous properties to evaluate the correlation coeffi-
cients. For the categorical properties, the orbitals (l),
type (semi-metal, Actinides, etc) and period was used.
Due to it being categorical, and the elastic properties be-
ing continuous, a correlation ratio (or η2-coefficient [19])
is calculated for these. η2 itself has values between 0 and
1, if equal to 1, there is association with the values and
their categories, if 0 then there is no association.
For the (semi-)continuous variables the number of pro-
tons (P ), valence electrons, unit cell volume (V0), mo-
lar mass (M) and electro-negativity (χ) are taken. In
an ideal case, one wants to have a linear correlation be-
tween these values. Therefore, the Pearson correlation
coefficient (r) is used [19]. However, it is important to
note that Pearsons r assumes the data to be linear and
quite sensitive to outliers. Therefore, also the Kendall
rank coefficient [20] (τ) is evaluated, since this does not
assume linear data and is not sensitive to outliers.
Table V shows that categorizing the element by its type
is a good first start to determine in what kind of range
these moduli will lie in. Especially the bulk modulus and
Poisson ratio have high correlations. The same cannot be
said for the orbital type. Apart from the bulk modulus
and B/G ratio, it is not easy to determine the right prop-
erties with the orbital type alone. Of course, since the
coefficient for G is so low, it is natural to assume that the
coefficient for the B/G ratio will therefore also be low.
For the period, it is clear that the amount of occupied
shells an element, has no big impact on the elastic prop-
erties. This becomes clear when realizing that elasticity
is determined by the bonding between atoms, since occu-
pied shells do not directly contribute to bonding between
atoms (in ideal circumstances), there is little correlation.
Finally, it is important to stress here that the population
used in this work is small, this naturally skews the results
to more extreme values.
As can be seen by Pearson’s r in figure 1 and Kendall’s
τ in figure 2, there is generally no clear pattern for de-
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l Type Period

η2
B 0.9257 0.9361 0.07849

η2
G 0.1964 0.7792 0.0777

η2
B/G 0.6006 0.8598 0.2119

η2
ν 0.1190 0.9046 0.1321

Table V. Correlation coefficients for different types of categor-
ical properties with the bulk modulus B, the shear modulus
G, the B/G ratio and the Poisson ratio ν.

termining the parameters. However, some of them stand
out, the volume seems to be an okay parameter for de-
termining the bulk modulus and somewhat for the shear
modulus. This should come as no surprise as the volume
is used to determine a BM fit, but is also directly con-
nected with the stress tensor method.
The electro-negativity (χ) also stands out. These co-
efficients are not very high but still high enough that a
rough estimate could be made. This property is linked to
how many electrons an atom can attract, which in turn
is linked to the bond strength, and thus the elasticity.
From the fact that Kendall’s τ shows a higher value for
χ, shows that there is not necessarily a linear relationship
(since Kendall’s τ does not assume linearity). And as
such, trying to predict values requires determining what
kind of relationship the two have to have a quantitative
way of predicting the values.
It is quite clear that for both methods, the Poisson mod-
ulus has no correlation at all, which is due to the ratio
being quite monotonous in its range, especially for FCC
lattices. However, it is not useless to calculate this, since
there is an indication that that there is some kind of anti-
linear relationship between the two, as Pearson r is quite
high and Kendall τ is low in absolute value. This ratio is
calculated using B, but if one doesn’t know G and would
like an estimate this could be a way.
Lastly, the proton count P and the molar mass M don’t
show promising results at all, the proton count doesn’t
immediately contribute to the bonding strength, but it
does determine the size of the nucleus, which could have
effects on stability. However, it is clear that this is not
the case.

IV. CONCLUSION

In this study, we have successfully used density func-
tional theory to calculate the ductility of various FCC
materials using the Pugh criterion. By calculating the
bulk modulus via the Birch-Murnaghan equation of state
and stress tensor methods, we could validate our ap-
proach through internal consistency checks. While some
were still off by a lot like Polonium (7.5%), Nickel
(−11.6%) and Lanthanum (7.1%), further improvement
like taking into account non linear stress methods or us-

Figure 1. Pearson r for various properties against the elastic
constants.

Figure 2. Kendall τ for various properties against the elastic
constants.

ing stronger convergence criteria could improve these re-
sults for better internal consistency. Furthermore, the
stress tensor method provided the shear modulus G
which could be used to determine the B/G ratio and
the Poisson modulus ν. Using the fact that a material is
ductile if B/G > 1.75 or ν > 0.26, we found that only
Pt, La and Ca were ductile, while Ce, Se and Mg were on
the edge of being (non)-ductile. On the other hand, Ac,
Th, Ni and Si were non-ductile. Lastly, Al and Po were
found to have a negative B/G ratio indicating structural
instability of the material at 0K and 0 pressure.
The applicability of DFT to predict elastic properties,
even for hypothetical phases, was evaluated by calculat-
ing the correlation coefficients between various proper-
ties and the elastic constants. The correlation analysis
highlights promising results for the orbital l of the ele-
ment and the atom type to estimate an upper and lower
bound for the elastic constants. Also the equilibrium
volume and electronegativity could be used to determine
these bounds. However, the population size was small
and many of these properties were not calculated using
DFT. Doing this could greatly increase statistical accu-
racy and precision.
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