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Synopsis
This project investigates the validity of the Pugh criterion for elements with an fcc crystal
structure. The results show that the criterion is not universally applicable, focusing on the
influence of experimental factors such as temperature and microstructure, parameters that
are not accounted for in density functional theory (DFT) calculations using a single unit
cell. In addition, trends in the bulk and shear moduli were analysed, revealing correlations
with atomic properties, bond types and charge density distributions.
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I. INTRODUCTION

The mechanical behaviour of materials can be divided into two main categories. There are
ductile and non-ductile materials. When increasingly more stress is applied to a non-ductile
material, it will break ’suddenly’ with hardly experiencing any deformation prior to the
fracture. A ductile material on the other hand will undergo plastic deformation before
breaking. The ductility of materials can be determined by performing a tensile test on
them. However, this can also be done in other ways. In this project, the ductility of certain
elements in a face-centered cubic (fcc) lattice were researched using density functional
theory (DFT). The advantage of DFT in this context is that elements that do not exist in
an fcc lattice can be created and tested in this way. During this project the software that
was used for the calculations was Quantum Espresso (QE) [3][5][4]. For all materials, the
Perdew-Burke-Ernzerhof (PBE) approximation for the exchange-correlation functional was
used.

The goal of this project was to determine the ductility of elements in a fcc lattice for the
entire periodic table. The ductility of an element can be tested by the Pugh criterion [26].
It states: a metal is expected to be ductile if B/G > 1.75, G/B < 0.57 or ν < 0.26. B is the
bulk modulus of a material, G the shear modulus and ν the Poisson’s ratio. Those values
could be determined using DFT. In this project B/G was determined for: Th, K, W, Si,
I and some additional elements. These results will be compared to experimental ductility
information to see whether the Pugh criterion holds. Finally, trends in the B/G ratio across
the Periodic System of Elements (PSE) will be examined and a possible explanation was
formulated.

II. METHOD

As mentioned in the introduction to determine whether or not a material violates the Pugh
criterion, a need arises to calculate the bulk modulus and the shear modulus. In this project
the bulk moduli were calculated with two different methods. One method was calculating
the total energies of different volumes for each of the materials and fitting to the equations
of states (EOS), this was also needed to find the optimal volume of the unit cell. The
second method was by first calculating the elastic constants by using the stress tensor. The
shear moduli were calculated only from the elastic constant method. A more thorough
explanation of these two methods is given in appendix II.
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III. RESULTS AND COMPARISON

The results from the convergence testing are given in table I together with the computed
volume of the unit cell, bulk modulus and comparisons with FLEUR and WIEN2k. For
each element three separate convergence tests were done. The parameters of the best
performing one were selected. For the elements Si, K and I there is a close to excellent
match between the results from Quantum Espresso and the other codes. For all elements,
a smaller volume for the unit cell was found, but the relative differences in bulk moduli are
smaller than 3%.

For W and Th, there is a poor match between the different codes. In these heavy ele-
ments, spin-orbit coupling becomes important. This interaction is not encoded in the used
X.pbe-spn-kjpaw psl.1.0.0.UPF pseudopotentials. These pseudopotentials are called ’scalar
relativistic’ because there is no spin-orbit coupling. WIEN2k and FLEUR are all-electron
codes and have spin-orbit coupling. For this reason, also a ’full relativistic’ pseudopotential
has been used for tungsten of the type W.rel-pbe-spn-kjpaw psl.1.0.0.UPF. With this rela-
tivistic pseudopotential a much better fit was obtained. The volume of the unit cell found
with this pseudopotential is much closer to the volume found in the literature [1], but the
bulk modulus calculated with this pseudopotential was further off compared to the scalar
relativistic pseudopotential. For this reason also the shear modulus was calculated with
the scalar relativistic pseudopotential and further computations were done for only light
atoms.

TABLE I: Convergence testing results and comparison with literature values for different
elements [1]. The result for W in a separate box was obtained using the full relativistic

pseudopotential.

Element Parameters V0 (Å3) B0 (GPa) B1 ν FLEUR-QE ν WIEN2k-QE

Si
k-mesh: 35x35x35
ecutwft: 90
ecutrho: 180

14.47 84.0 4.28 0.1281 0.08995

K
k-mesh: 15x15x15
ecutwft: 90
ecutrho: 360

73.93 3.6 3.77 0.129794 0.13115

I
k-mesh: 35x35x35
ecutwft: 70
ecutrho: 210

35.03 23.9 5.55 0.20612 0.211672

W
k-mesh: 35x35x35
ecutwft: 70
ecutrho: 280

16.37 282.6 4.00 0.54785 0.524277

Th
k-mesh: 20x20x20
ecutwft: 120
ecutrho: 600

32.01 56.3 3.92 0.5414 0.5686

W
k-mesh: 20x20x20
ecutwft: 70
ecutrho: 280

16.44 275.9 3.94 0.1508 0.1316

For each element in their fcc state, the bulk-and shear modulus were calculated using the
stress tensor method (STM). The results are shown in table II. The values of B/G were
compared to computed values from values obtained from [14]. For the five major elements
of this work, there is always a slight overestimation for calculated B/G in comparison
with the literature. However, the differences are not significant and the conclusions using
Pugh criterion will be the same. The same comparison was made for the other calculated
elements. Here, the results were similar to those of the literature. Only for Al and V there
was a larger difference. To confirm Pugh’s criterion, experimental data is needed. B/G was
experimentally determined for most of the elements at 0K. Most of them were not in a fcc
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lattice, as that state is unstable for those materials. Therefore, the differences in calculated
and experimental results are large. From the main elements of this work, only thorium
exists in a fcc lattice. Other calculated elements existing in a fcc lattice are: Al, Ca and
Co. The calculated and experimental results for fcc lattice materials are similar, except for
Co. The Pugh criterion predicts Co to be non-ductile when B/G is calculated. However
experiments show that Co is ductile.

Experimental results of ductility are needed for the validation of the Pugh criterion. The
value of elongation before fracture is used to express ductility. The ductility of a material
becomes larger when this value increases. When the fracture elongation is low, the material
is non-ductile. It is difficult to find experimental data for ductility of single atom materials.
The few results found, need to be analysed critically. Most of the tests were performed
on materials that are not in an fcc lattice structure. Moreover, the conditions in which
the experiments are done differ. Meaning that some experiments were done at different
temperatures than 0K, and DFT calculations assume the structures to be at 0K. Mechani-
cal properties are dependent of temperature, pre-testing treatments, microstructure of the
material (grain size), testing conditions. Those are not equal for all the tested elements.
This makes it difficult to draw an overall conclusion about the Pugh criterion.

From the five major elements of this work, I is the only element for which no experimental
values were found. For the other elements, the calculated B/G using STM (fcc) will be
compared to the experimental elongation (specific structure per element). According to the
Pugh criterion, a material will be ductile when B/G > 1.75. Si and K can be considered
ductile according to the elongation. Their calculated values for B/G are significantly higher
than 1.75. However, the results for W and Th contradict Pugh’s criterion. Th has a high
experimental ductility and a low B/G-ratio. W, on the other hand, is clearly non-ductile,
but has a calculated B/G-ratio that is slightly higher than 1.75. The results that should
be the most accurate are those where the experimental results are also coming from an fcc
lattice. The experimental results show that Co and Al are ductile materials. Also Ca can
be considered to be ductile as well, but less than Co and Al. The Pugh criterion holds
for Al and Ca, but with Co the same result as with Th can be observed. From four fcc
materials researched, only two follow Pugh’s criterion.

Many experimental ductility values were determined on body-centered cubic (bcc) (Im3m)
structured materials. fcc materials tend to be more ductile than bcc, because bcc has a
more closed packed structure [22]. The calculated values for B/G in fcc are generally higher
than those in bcc. Therefore, the Pugh criterion for fcc materials cannot be confirmed by
experimental data from bcc. For Na, Cr and W B/G for fcc is slightly higher than 1.75.
According Pugh’s criterion, the materials should be ductile, but when tested in bcc, they
are non-ductile. However for V in an fcc structure, B/G is significantly higher than 1.75.
In this case, the tested bcc material is ductile.

IV. TRENDS IN THE PSE

To find trends in the B/G ratio across the PSE, it may be easier to find trends in the
different moduli separately. First, the bulk modulus is investigated. Figure 1 shows the
values for the bulk modulus of elements in an fcc structure up to Xe. These values were
obtained from [1]. In the same period, the bulk modulus decreases for heavier elements.
This is directly related to the charge density and is shown in figure 4. This figure shows the
difference in charge density for Na and K. Both graphs are similar because they are below
each other in the same column, but the values are different. The charge density between
atoms is greater for Na compared to K, therefore it will be more difficult to compress or
expand the unit cell. This results in a larger bulk modulus. However, this is not the full
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TABLE II: Results of calculated (STM) and literature (lit) values of B and G for different
elements in fcc. Experemantal (exp) values for B/G and elongation of different elements

are given in their stable space group.

Element B0 (GPa)(STM) G (GPa)(STM) B/G (STM) B/G (lit) B/G (exp) elong (%)(exp) Space group (exp)
Si 83.08 18.33 4.53 3.7214 1.448 30.029 Fd3m114

K 3.55 1.3230 2.69 2.0014 1.9630 12.010 Im3m14

I 23.98 2.97 8.07 / / / Cmce14

W 283.26 153.79 1.84 1.6214 1.9230 > 127 Im3m14

Th 55.19 39.89 1.38 1.2514 1.5830 3423 Fm3m14

Na 6.61 2.75 2.41 / 1.9430 2.0023 Im3m14

Al 77.00 31.69 2.44 4.2814 2.7030 11.82 Fm3m14

Ca 17.36 9.62 1.80 1.8914 1.839 7.023 Fm3m14

Sc 51.60 24.53 2.10 2.1314 1.7317 5.023 P63/mmc14

Ti 106.85 40.45 2.64 2.5314 2.2112 24.024 P6/mmm14

V 175.50 36.53 4.80 3.6114 3.2511 13.031 Im3m14

Cr 236.80 115.74 2.05 1.8614 1.4130 > 123 Im3m14

Co 260.23 175.62 1.48 1.5814 2.0128 19.015 Fm3m14

Zn 84.01 6.78 12.40 / 1.8016 4.832 P63/mmc14

Br 28.56 20.98 1.36 1.4514 / / Cmce14

Rb 2.76 1.18 2.34 3.0014 2.2430 / Im3m14

explanation because the central transition metals have an increasing bulk modulus going
down a period. An atomic property that has the same trends, is the electronegativity.
The bulk modulus will thus be dependent on the charge density and the electronegativity
[20][7][25][6][21].

For elements in the same row, a trend across the row is not so clear. For the d-block
elements, the value for the bulk modulus goes up and down almost symmetrically. A
similar trend applies to the unit cell volume going down and up again. This affects the
charge density and hence the bulk modulus. A similar evolution in bulk modulus happens
for the p-block elements with the exception of B which has an exceptional small volume.
However, this trend cannot be linked to volume since Ge has a larger volume but a larger
bulk modulus compared to Ga. To better understand the evolution of the bulk modulus,
it is necessary to split it into a contribution of the volume, electronegativity and charge
density and study these contributions separately [18].

The next step is to look for trends in the shear modulus. As the bulk modulus decreases for
elements in the same period, the shear modulus for the alkali metals was calculated to find
a similar pattern. The same trend holds for these elements and the shear modulus becomes
smaller for heavier elements. Similar findings apply for Cl/ Br. The opposite was found for
Cr/W, just as for the bulk modulus. This suggests that the same trends in a period hold
for the shear modulus and the bulk modulus. Again, this could be related to the charge
density and electronegativity.

For d-block elements in the same row, there is a clear trend visible. The absolute value of
the shear modulus becomes larger for elements up to Co and than drops quickly. Looking
at the charge density difference plots in fig 5, a similar trend is present in the spacial
dependence of the charge density difference. The plots become more and more rotationally
asymmetric up to Co. For Zn, the plot resembles the Na or K plots, fig 4, and is almost
rotationally symmetric. The shear modulus is a measure on how easy the atoms can slide
on top of each other. If the electron density between atoms stays constant, this will happen
easily. However, if there is a significant charge build-up, the atoms are more repelled and
the shear modulus will be bigger. This suggest that the type of bond plays an important
factor in the value of the shear modulus. On the other hand, the valence central charge
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density between atoms goes up until Fe and then drops again [19].

The p-block elements have not been tested as extensively as the d-block elements. The
bonding character of these elements is more covalent like and thus also more directional.
From above one would expect high values for the shear modulus. However, the opposite
is true and is explained using I. In fig 6, the charge density and charge density difference
is given. The central charge density is extremely low. Hence it is energetically favourable
for the atoms to move to that spot as the electronic repulsion would be less. This is also
visible in the charge density difference plot. The central charge density difference is slightly
negative. This means that it looks like an attractive potential and the atoms want to slide
towards this potential. This is why the shear modulus was found to be negative for I in a
fcc lattice. The reason for this smallness is probably a combination of the directional bond
and the smallness of the central charge density difference.

Combining the trends of the bulk modulus and the shear modulus, it is possible to state
trends in the B/G ratio. Going down a period, both moduli go down, but not at the same
rate. This results in a B/G ratio that is not predictable. For the d-block elements, the bulk
modulus goes up and down almost symmetrically, but the shear modulus goes up to Co after
which it drops drastic. This results in a B/G ratio that grows up to V, becomes smaller
up to Co and then rapidly grows for the remaining elements. For the p-block elements, the
bulk modulus goes up and down and it is guessed that the bulk modulus becomes smaller.
This results in a B/G ratio that increases. In order to have a complete understanding,
further investigation is needed on why the electronic densities behave as they do.

V. CONCLUSION

Comparing the B/G ratio’s, and evaluating the Pugh criterion, with the elongation, it
is hard to obtain a certain conclusion about ductility properties of the tested materials.
The primary reason for this is that the experimental values of fracture elongation do not
represent the general ductility of the material. The tests were performed at different tem-
peratures and the materials had specific microstructures. These factors have a great impact
on the ductility of a material. To get more representative results, each material should be
tested at the same temperature and should have a similar microstructure.

In future work it may be interesting to look for a link between fcc and bcc structures. From
which calculated value of B/G in fcc is the bcc material ductile? When the bcc variant of
a material is ductile, does that imply fcc is ductile as well?

Further, trends in the bulkmodulus, shearmodulus and the B/G ratio were looked into. It
was found that both moduli decrease in a period and this is related to the decrease in charge
density. For the central transition metals, the opposite holds and could be related to an
increase in electronegativity. This results in a non trivial trend in their respective ratio. The
p-block elements were not investigated extensively so no trends could be observed. For the
transition metals, the bulkmodulus and shearmodulus have different behaviour. This results
in a growing ratio because the bulkmodulus increases. Then the ratio becomes smaller, as
the bulkmodulus decreases and the shearmodulus increases. Finally the ratio goes up again
because the shearmodulus drops quickly. It was found that Zn has the highest B/G ratio
and would have the longest elongation according to the Pugh criterion.
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Appendix A: Supplementary tables and figures

FIG. 1: Bulk moduli (GPa) for elements up to Xe in the fcc structure obtained from [1].
Clear trends are visible in the same column of the PSE.

FIG. 2: Computed absolute value of the shear moduli (GPa) for elements up in the fcc
structure.

FIG. 3: Computed B/G ratio for elements in the fcc structure.
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FIG. 4: Charge density difference with legend. The central charge density between atoms
for K is smaller compared to Na. This results in a smaller bulk modulus. Left: Na, Right:K

FIG. 5: Charge density difference for the elements Ti, Cr, Co and Zn. The charge density
difference plots become more and more rotationally asymmetric up to Co. This results in
a increasing shearmodulus.

FIG. 6: Left: Charge density plot for I with legend. The central charge density is extremely
low. Right: Charge density difference plot for I with legend. Strong directional bonds are
visible, but the central density difference is slightly negative, creating almost an attractive
force towards that spot.

Appendix B: Method

1. Convergence testing

When calculations are to be done on a crystal using DFT, a convergence test needs to
be performed on it first. By doing this, numerically meaningful results will be calculated
rather than noise. To start with convergence testing, an approximate lattice constant is
needed. This value was obtained from [1]. This is needed to build an input file for a specific
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element in an fcc-lattice. Each element also needs a pseudopotential. The following form
for pseudopotentials: X.pbe-spn-kjpaw psl.1.0.0.UPF was used. With a complete input file,
the convergence testing can begin. First, the k-mesh size was increased. For each step,
the calculated pressure and runtime were noted. The lowest k-mesh size for which the
fluctuation in pressure was less than 1% was accepted. After this, the ranges of the ecutwtf
and ecutrho values were changed. These adaptations caused a decrease in fluctuations.
Values for k-mesh, ecutwtf, and ecutrho that showed good convergence within a reasonable
computation time were chosen. High k-meshes and cutoff energies were used, because the
computations were done on the TIER-2 HPC from Ghent University.

TABLE III: Results from convergence testing, together with the lattice constant obtained
from the EOS fit.

a0 (Å) k-mesh Ecut,wft (Ry) Ecut,rho (Ry)
Na 5.29818 35x35x35 70 350
Ca 5.52727 30x30x30 70 350
Sc 4.61674 30x30x30 100 500
Ti 4.11714 30x30x30 120 800
V 3.82368 30x30x30 150 750
Cr 3.62550 30x30x30 150 1500
Rb 7.13847 30x30x30 55 330
Al 4.03753 25x25x25 60 300
Br 4.72159 35x35x35 100 500
Co 3.44587 35x35x35 100 1000
Zn 3.92451 35x35x35 100 500

2. Equation of states method

To compute the bulkmoduli, deviations in the volume up to 10% of the values from [1] were
used. 6 equidistant lattice constants were used to compute the total energy and to make a
fit to the Birch–Murnaghan equation of state. The fit was made using the ev.x command
from Quantum Espresso. This gave values for the volume of the unit cell, bulkmodulus and
the derivative of the bulkmodulus with respect to the pressure. To validate these results,
comparisons were made with the results from [1]. These comparisons were done by the
following definition, with weights wV0

= 1, wB0
= 1

20 , wB1
= 1

400 :

νwV0
,wB0

,wB1
(a, b) = 100

√√√√ ∑
Y=V0,B0,B1

[
wY · Ya − Yb

(Ya + Yb)/2

]2

Values of ν < 0.1 are an excellent match between the two results and values of ν < 0.33 is
considered good.

3. Stress tensor method

This method uses that there is a relation between the strain tensor and the stress tensor.
By using the Voight notation for the strain and the stress tensor and for a general material,
i.e. no symmetry, six different deformations of the unit cell will need to be considered.
These six deformations are three tensile deformations and three shear deformation. All of
the deformation need to be linear independent of each other. Each deformation will lead
to a specific strain tensor. These strain tensors can be calculated via the definition of the
strain tensor.
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E =
1

2

(
FTF − 1

)
With F being the deformation matrix and FT being the transposed deformation matrix,
and 1 is the identity matrix.

To deform the unit cells, the deformation matrix F is multiplied with the root tensor of
the material. The resulting matrix is the root tensor for the deformed unit cell. In this
project Quantum Espresso is used for the calculation of the stress tensor. It is important to
note that for the CELL PARAMETERS input files used for these calculations, the root
tensor needs to be transposed. Also the position of the atoms have to be optimized prior
to calculating the stress tensor. The stress tensor obtained from the output of QE is the
external stress. For these calculations the internal stress is needed therefore the signs of the
values from the output of the QE-calculation needs to be inverted. The Voight notation for
these 3x3 matrices is a column vector with six values.

σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 →


σxx

σyy

σzz

σyz

σxz

σxy


This is the Voight notation for the stress tensor. for the strain tensor the Voight notation
is a bit different.

ϵxx ϵxy ϵxz
ϵxy ϵyy ϵyz
ϵxz ϵyz ϵzz

 →


ϵxx
ϵyy
ϵzz
2ϵyz
2ϵxz
2ϵxy


The relation between the stress tensor and the strain tensor is the stiffness tensor, this is a
tensor with components Cij which are the elastic constants. From these elastic constants
properties of materials can be calculated.

σxx

σyy

σzz

σyz

σxz

σxy

 =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




ϵxx
ϵyy
ϵzz
2ϵyz
2ϵxz
2ϵxy


For six deformations the equations can be written as the following.
σ11 σ12 σ13 σ14 σ15 σ16

σ21 σ22 σ23 σ24 σ25 σ26

σ31 σ32 σ33 σ34 σ35 σ36

σ41 σ42 σ43 σ44 σ45 σ46

σ51 σ52 σ53 σ54 σ55 σ56

σ61 σ62 σ63 σ64 σ65 σ66

 =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




ϵ11 ϵ12 ϵ13 ϵ14 ϵ15 ϵ16
ϵ21 ϵ22 ϵ23 ϵ24 ϵ25 ϵ26
ϵ31 ϵ32 ϵ33 ϵ34 ϵ35 ϵ36
2ϵ41 2ϵ42 2ϵ43 2ϵ44 2ϵ45 2ϵ46
2ϵ51 2ϵ52 2ϵ53 2ϵ54 2ϵ55 2ϵ56
2ϵ61 2ϵ62 2ϵ63 2ϵ64 2ϵ65 2ϵ66


This is a systems of equations that can be solved. The large stress tensor will be Σ and
the large strain tensor is E. The matrix with the elastic constants is C. The system of
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equations can be written as Σ = CE. To find the elastic constants you can multiply both
sides to the right with the inverse large strain tensor E−1.

C = ΣE−1

This is the method for a general material, but in this project all the materials that will
be researched are in the fcc structure. In the fcc structure there is a lot of symmetry.
Considering these symmetry properties will make clear that only two deformations are
needed: one shear deformation and a tensile deformation. Also the only elastic constant
different from zero are the C11, C12 and C44. The stiffness tensor for a cubic material is:

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


From these three elastic constant both the bulk modulus and shear modulus can be calcu-
lated with the following formulas.

B =
C11 + 2C12

3

G =
C11 − C12 + 3C44

5

Previous formulas are used to calculate B and G in a cubic lattice. In this project, there
are materials that are in a hexagonal lattice. For those, another formula is used to calculate
B [13]. For the calculation of G, there is no exact formula. There are some conventions to
get an approximation. In this project, the convention of following source is used [16].

Bhex =
2 (C11 + C12 + 2C13 + 1/2C33)

9

C = (C11 + C12)C33 − 2C2
13

Ghex = (
C2

44 (C11 − C12)
2C

24Bhex
)1/5


